目录
一、Transformer背景介绍
1、Transformer的诞生
2018年10月,Google发出一篇论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》, BERT模型横空出世, 并横扫NLP领域11项任务的最佳成绩!
论文地址: https://arxiv.org/pdf/1810.04805.pdf
而在BERT中发挥重要作用的结构就是Transformer, 之后又相继出现XLNET,roBERT等模型击败了BERT,但是他们的核心没有变,仍然是:Transformer.
2、Transformer的优势
相比之前占领市场的LSTM和GRU模型,Transformer有两个显著的优势:
- Transformer能够利用分布式GPU进行并行训练,提升模型训练效率.
- 在分析预测更长的文本时, 捕捉间隔较长的语义关联效果更好.
下面是一张在测评比较图:

订阅专栏 解锁全文
3798

被折叠的 条评论
为什么被折叠?



