《AI大模型开发笔记》——Transformer架构解析

目录

一、Transformer背景介绍

1、Transformer的诞生

2、Transformer的优势

3、Transformer的市场 

二、Transformer架构解析

1、认识Transformer架构

1.1、Transformer模型的作用

1.2、Transformer总体架构图

2、输入部分实现

2.1、文本嵌入层的作用 

2.2位置编码器的作用 

3 、编码器部分实现

 3.1、 掩码张量

 3.2、注意力机制

 3.3、多头注意力机制

 3.4、前馈全连接层

 3.5、规范化层

3.6 子层连接结构 

3.7 编码器层

 3.8 编码器

 4 解码器部分实现

4.1 解码器层

 4.2 解码器

5 输出部分实现

线性层的作用

softmax层的作用


一、Transformer背景介绍

1、Transformer的诞生

2018年10月,Google发出一篇论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》, BERT模型横空出世, 并横扫NLP领域11项任务的最佳成绩!

论文地址: https://arxiv.org/pdf/1810.04805.pdf

而在BERT中发挥重要作用的结构就是Transformer, 之后又相继出现XLNET,roBERT等模型击败了BERT,但是他们的核心没有变,仍然是:Transformer.

2、Transformer的优势

相比之前占领市场的LSTM和GRU模型,Transformer有两个显著的优势:

  1. Transformer能够利用分布式GPU进行并行训练,提升模型训练效率.
  2. 在分析预测更长的文本时, 捕捉间隔较长的语义关联效果更好.

下面是一张在测评比较图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Richard Chijq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值