深入理解 Kubernetes `kubectl top` 命令中的 CPU 指标:毫核与cpu时钟以及传统核心数的关系

在这里插入图片描述

当我们在 Kubernetes 集群中排查问题或监控资源使用情况时,kubectl top 命令是一个非常常用的工具。它能快速地展示 Node 或 Pod 的当前 CPU 和内存使用情况。例如,运行的命令:

kubectl top po

输出类似这样:

app-api-686799f58d-bgfrl       52m         1991Mi
app-api-686799f58d-hcqzc       52m         2015Mi
app-api-686799f58d-p2xbc       49m         1986Mi

这里的 52m49m 代表的就是 Pod 的 CPU 使用量。那么,这些数字具体代表什么?它们和我们日常理解的 CPU 时钟频率(GHz)、双核、四核等概念有什么关系呢?

1. kubectl top 显示了什么?

kubectl top 显示的是 Kubernetes 资源(Node 或 Pod)在过去一个短暂周期内平均资源使用量。这里的资源主要指 CPU内存

对于 CPU,它显示的是 Pod 或 Node 消耗的计算时间

2. 揭秘 ‘m’ 单位:毫核 (Millicores)

kubectl top 显示的 CPU 使用量使用的单位是 m,它代表 毫核 (millicores)

在 Kubernetes 中,1 个完整的 CPU 核心 被定义为 1000m

所以:

  • 1000m = 1 个完整的 CPU 核心
  • 500m = 0.5 个 CPU 核心(即半个核心)
  • 52m = 0.052 个 CPU 核心
  • 5m = 0.005 个 CPU 核心

Kubernetes 之所以引入毫核这个单位,是为了允许对 CPU 资源进行更细粒度的分配和度量。应用程序很少需要独占一个完整的核心,使用毫核可以更有效地利用硬件资源。

3. CPU 指标是如何测量的?(幕后原理)

kubectl top 显示的数据并不是凭空出现的,它背后有一套数据采集和汇聚的机制:

  1. 底层 (cgroups): 在每个 Linux 节点上,容器运行时(如 Containerd, CRI-O 等)利用操作系统的 Control Groups (cgroups) 功能来隔离和监控每个容器的资源使用。Cgroups 会跟踪每个进程使用了多少总的 CPU 时间(例如,CPU 时钟周期数或纳秒)。这是一个不断累积的计数器。
  2. Kubelet 采集: 运行在每个节点上的 Kubelet 组件会定期(比如每隔几秒钟)从 cgroups 读取每个容器当前的累积 CPU 使用时间。
  3. 计算速率: Kubelet 拿到当前的累积时间后,会与上一次采集时记录的累积时间进行比较。通过计算两次采集之间的 CPU 时间差 除以 时间间隔,就可以得出这段时间内的平均 CPU 使用速率(例如,每秒消耗多少 CPU 时间)。
  4. 标准化与转换为毫核: Kubelet 将这个速率标准化为相对于一个完整 CPU 核心的使用比例,并乘以 1000 转换为毫核单位。例如,如果在一个 10 秒的间隔内,容器使用了相当于 0.5 秒的 CPU 时间,那么速率就是 0.5秒 / 10秒 = 0.05 (即 5% 的核心使用率),转换为毫核就是 0.05 * 1000 = 50m。
  5. Metrics Server 汇聚: Kubernetes 集群通常会部署一个 Metrics Server 组件。Metrics Server 会定期(通常每 10-30 秒)从集群中所有节点的 Kubelet 拉取这些计算好的平均 CPU 和内存使用数据。
  6. kubectl top 查询: 当我们运行 kubectl top 命令时,它实际上是向 Kubernetes API Server 发起请求,API Server 再从 Metrics Server 获取最新的、针对我们查询的 Pod 或 Node 的指标数据并展示出来。

所以,我们在 kubectl top 中看到的 52m,代表的是在 Metrics Server 最近一次从 Kubelet 拉取数据前的那个采集周期内,该 Pod 平均消耗了 52 毫核的 CPU 计算能力。这是一个平均值,而不是瞬时值。

4. Kubernetes CPU 与传统 CPU 的关联与区别

现在,让我们把 Kubernetes 的毫核概念与传统的 CPU 时钟频率和核心数关联起来。

  1. 关联:1000m 对应一个核心

    • 最直接的关联是数量关系:1000m 在概念上代表了宿主机上的一个物理 CPU 核心或一个虚拟 CPU 核心(取决于我们的宿主机是物理机还是虚拟机)**所能提供的计算能力。
    • 如果我们的 Node 上有一个物理 CPU,它是四核的,那么理论上这个 Node 总共可以向 Kubernetes 提供大约 4 * 1000m = 4000m 的 CPU 容量(实际可用容量可能会略低,因为操作系统和 Kubelet 本身也需要消耗少量 CPU)。
    • 我们看到的 Pod 使用 52m,意味着它平均使用了大约是 Node 上单个核心计算能力的 5.2%。
  2. 区别:Kubernetes 抽象掉了时钟频率 (GHz)

    • 这是最关键的区别点。在传统的硬件概念中,CPU 的性能很大程度上取决于其时钟频率 (GHz)。一个 3GHz 的核心通常比一个 2GHz 的核心计算能力更强。
    • 但是,在 Kubernetes 中,为了实现统一的资源管理和跨机器的调度,Kubernetes 抽象掉了不同核心之间的性能差异(即时钟频率)。 对 Kubernetes 而言,Node A 上的 1000m 和 Node B 上的 1000m 被视为等量的计算能力,无论 Node A 的核心是 2GHz 还是 Node B 的核心是 3GHz。
    • 这意味着 kubectl top 显示的 52m 是一个相对值,代表使用了相当于标准化的 0.052 个核心的计算能力。这个值本身不直接告诉我们 Pod 在物理 CPU 上占用了多少 GHz 的处理能力,而是告诉我们它占用了多少核心份额

为什么要进行这种抽象?

想象一个集群中有不同配置的服务器:有些是老旧的低频 CPU,有些是全新的高频 CPU。如果 Kubernetes 直接按 GHz 或原始 CPU 时间来分配和度量,调度器会非常复杂,也很难保证 Pod 在不同 Node 上获得一致的资源份额。通过将所有 CPU 资源标准化为“核心份额”(以毫核为单位),Kubernetes 提供了一个统一的资源视图,使得调度器可以更公平、更有效地将 Pod 分配到集群中的任何可用 Node 上,而不用关心底层 CPU 的具体型号和频率。

5. 与 CPU Requests 和 Limits 的关系

在 Pod 的配置中,我们可以指定 CPU 的 requestslimits

  • requests: Pod 启动时请求的 CPU 资源量,调度器使用这个值来决定将 Pod 放在哪个 Node 上。
  • limits: Pod 可以使用的最大 CPU 资源量,用于限制 Pod 不会过度消耗 CPU 导致影响其他 Pod。

kubectl top 显示的 CPU 指标 (52m 等) 是 Pod 的实际使用量。这个使用量:

  • 通常会高于或等于其 CPU requests(如果 Node 资源充足)。
  • 不应超过其 CPU limits(如果设置了 limits)。如果一个 Pod 的实际使用量持续接近或超过了其 limits,可能会导致 Pod 被限流 (throttling),从而影响其性能。

结论

kubectl top 命令中的 CPU 指标(如 52m)是一个基于毫核 (millicores)平均使用量。它代表了 Pod 在过去一个短暂周期内平均消耗了多少标准化后的 CPU 核心份额

它与传统 CPU 概念的关系是:

  • 关联: 1000m 概念上等于宿主机上的一个物理或虚拟 CPU 核心的计算能力。我们的 Pod 使用 52m 意味着它使用了相当于该 Node 上单个核心大约 5.2% 的计算能力。
  • 区别: Kubernetes 为了实现统一资源管理和调度,抽象掉了底层 CPU 的时钟频率差异。我们看到的 m 值是一个标准化的份额,不直接反映具体的 GHz 数值。

理解这个抽象层对于有效地在 Kubernetes 中进行资源规划、监控和故障排查至关重要。它帮助我们将关注点从具体的硬件型号转移到统一的资源单元上,从而更好地管理分布式应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

运维开发王义杰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值