揭开魔力的神秘面纱:语音识别算法内幕

了解使语音识别成为可能的机制。了解应用 AI 日益常见的语音用户界面 (VUI) 可以为您带来优势。

现在似乎每个商业设备都具有语音识别的一些实现或尝试。从跨平台语音助手到转录服务和辅助功能工具,再到最近 LLM 的差异化因素,听写已成为日常用户界面。从 2023 年到 2028 年,语音用户界面 (VUI) 的市场规模预计将以 23.39% 的复合年增长率增长,我们可以预期会有更多技术优先的公司采用它。但是你对这项技术了解多少呢?

让我们首先剖析和定义使语音识别成为可能的最常见技术。

语音识别的机制:它是如何工作的?

特征提取

在进行任何“识别”之前,机器必须将我们产生的声波转换为它们可以理解的格式。此过程称为预处理和特征提取。两种最常见的特征提取技术是 Mel 频率倒谱系数 (MFCC) 和感知线性预测 (PLP) 系数。

Mel 频率倒谱系数 (MFCC)

MFCC 捕获音频信号的功率谱,从根本上确定每种声音的独特之处。该技术首先放大高频以平衡信号并使其更清晰。然后将信号分成短帧或声音片段,持续时间在 20 到 40 毫秒之间。然后分析这些帧以了解其频率分量。通过应用一系列模拟人耳感知音频的滤波器,MFCC 可以捕获语音信号的关键、可识别特征。最后一步将这些功能转换为声学模型可以使用的数据格式。

感知线性预测 (PLP) 系数

PLP 系数旨在尽可能接近地模拟人类听觉系统的反应。与 MFCC 类似,PLP 过滤声音频率以模拟人耳。滤波后,动态范围(样本的 “响度” 范围)被压缩,以反映我们的听觉对各种音量的不同反应。在最后一步中,PLP 估计“频谱包络”,这是一种捕获语音信号最基本特征的方法。此过程提高了语音识别系统的可靠性,尤其是在嘈杂的环境中。

声学建模

声学建模是语音识别系统的核心。它形成了音频信号(声音)和语音的语音单位(构成语言的不同声音)之间的统计关系。使用最广泛的技术包括隐马尔可夫模型 (HMM) 和最近的深度神经网络 (DNN)。

隐马尔可夫模型 (HMM)

自 1960 年代后期以来,HMM 一直是模式识别工程的基石。它们对语音处理特别有效,因为它们将口语单词分解成更小、更易于管理的部分,称为音素。每个提取的音素都与 HMM 中的一个状态相关联,并且模型会计算从一个状态转换到另一个状态的概率。这种概率方法允许系统从声音信号中推断单词,即使在存在噪声和不同个体的语音差异的情况下也是如此。

深度神经网络 (DNN)

近年来,与 AI 和机器学习的增长和兴趣密切相关,DNN 已成为自然语言处理 (NLP) 的首选。与依赖于预定义状态和转换的 HMM 不同,DNN 直接从数据中学习。它们由多层相互连接的神经元组成,这些神经元逐渐提取数据的更高级别表示。通过关注上下文以及某些单词和声音之间的关系,DNN 可以捕获更复杂的语音模式。与 HMM 相比,这使它们在准确性和稳健性方面表现得更好,并接受了额外的培训以适应口音、方言和说话风格——这在日益多语言的世界中是一个巨大的优势。

展望未来:挑战与创新

语音识别技术已经取得了长足的进步,但正如任何用户都会认识到的那样,它仍远非完美。背景噪音、多个扬声器、口音和延迟是尚未解决的挑战。随着工程师逐渐认识到网络模型的潜力,一项有前途的创新是使用利用 HMM 和 DNN 优势的混合解决方案。扩展 AI 研究的另一个好处是跨领域应用深度学习,传统上用于图像分析的卷积神经网络 (CNN) 在语音处理方面显示出有希望的结果。另一个令人兴奋的发展是使用迁移学习,在大型数据集上训练的模型可以针对特定任务和语言进行微调,而配套数据集相对较小。这减少了为新应用程序开发高性能语音识别所需的时间和资源,从而允许采用更环保的方法进行重复模型部署。

整合所有内容:实际应用

实际应用

概括地说,特征提取和声学建模协同工作,形成了所谓的语音识别系统。该过程从使用预处理和特征识别将声波转换为可管理的数据开始。然后,这些数据点或特征被馈送到声学模型中,声学模型对其进行解释并将输入转换为文本。从那里,其他应用程序可以轻松地与语音输入交互。

从最嘈杂、最时效的环境(如汽车界面)到个人设备上的辅助功能替代方案,我们始终信任这项具有更多关键功能的技术。作为深入参与改进这项技术的人,我相信理解这些机制不仅仅是学术性的;它应该激励技术人员欣赏这些工具及其在提高用户体验的可访问性、可用性和效率方面的潜力。随着 VUI 与大型语言模型 (LLM) 的关联越来越紧密,工程师和设计师应该熟悉生成式 AI 实际应用中最常见的界面。

作者:  Manoj Boopathi Raj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值