为什么选择使用Nvidia推出的Jetson Tx2作为视觉slam开发的平台呢,主要考虑到Jetson Tx2搭载了256个Nvidia的cuda的加速核心,具有很强的图像处理和神经网络计算能力,可以方便的使用Cudnn或者Cafe或者Tensorflow来进行深度学习加速。同时这块板子的售价也是不便宜的,我从淘宝买的,5000软妹币,不过可以申请Nvidia的教育折扣,据说可以便宜2ooo块,不过审核周期比较长。
Jetson Tx2的基本硬件配置如下图所示:
接下来就讲解一下如何配置Jetson Tx2 的系统。
参考官方教程网站:Jetpack安装指南
注意:安装过程中,最好在网速好的

本文介绍了选择Jetson Tx2作为视觉SLAM开发平台的原因,强调其强大的CUDA核心和图像处理能力。详细阐述了Jetson Tx2的硬件配置,并提供了安装Jetpack的步骤,包括注意事项、更新系统源至中科大镜像源的操作,为后续的深度学习和SLAM开发打下基础。
最低0.47元/天 解锁文章
877

被折叠的 条评论
为什么被折叠?



