1.简单介绍下ES?
ES是一种存储和管理基于文档和半结构化数据的数据库(搜索引擎)。它提供实时搜索(ES最近几个版本才提供实时搜索,以前都是准实时)和分析结构化、半结构化文档、数据和地理空间信息数据。
2.简单介绍当前可以下载的ES稳定版本?
最新的稳定版本是7.10.0
3.安装ES前需要安装哪种软件?
JDK 8或者 Java 1.8.0
4.请介绍启动ES服务的步骤?
**A:**启动步骤如下
Windows下进入ES文件夹的bin目录下,点击ElasticSearch.bat开始运行
打开本地9200端口http://localhost:9200, 就可以使用ES了
5.ES中的倒排索引是什么?
传统的检索方式是通过文章,逐个遍历找到对应关键词的位置。
倒排索引,是通过分词策略,形成了词和文章的映射关系表,也称倒排表,这种词典 + 映射表即为倒排索引。
其中词典中存储词元,倒排表中存储该词元在哪些文中出现的位置。
有了倒排索引,就能实现 O(1) 时间复杂度的效率检索文章了,极大的提高了检索效率。
加分项:
倒排索引的底层实现是基于:FST(Finite State Transducer)数据结构。
Lucene 从 4+ 版本后开始大量使用的数据结构是 FST。FST 有两个优点:
1)空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间;
2)查询速度快。O(len(str)) 的查询时间复杂度。
6. ES是如何实现master选举的?
前置条件:
1)只有是候选主节点(master:true)的节点才能成为主节点。
2)最小主节点数(min_master_nodes)的目的是防止脑裂。
Elasticsearch 的选主是 ZenDiscovery 模块负责的,主要包含 Ping(节点之间通过这个RPC来发现彼此)和 Unicast(单播模块包含一个主机列表以控制哪些节点需要 ping 通)这两部分;
获取主节点的核心入口为 findMaster,选择主节点成功返回对应 Master,否则返回 null。
选举流程大致描述如下:
第一步:确认候选主节点数达标,elasticsearch.yml 设置的值 discovery.zen.minimum_master_nodes;
第二步:对所有候选主节点根据nodeId字典排序,每次选举每个节点都把自己所知道节点排一次序,然后选出第一个(第0位)节点,暂且认为它是master节点。
第三步:如果对某个节点的投票数达到一定的值(候选主节点数n/2+1)并且该节点自己也选举自己,那这个节点就是master。否则重新选举一直到满足上述条件。
- 补充:
- 这里的 id 为 string 类型。
- master 节点的职责主要包括集群、节点和索引的管理,不负责文档级别的管理;data 节点可以关闭 http 功能。
7. 如何解决ES集群的脑裂问题
所谓集群脑裂,是指 Elasticsearch 集群中的节点(比如共 20 个),其中的 10 个选了一个 master,另外 10 个选了另一个 master 的情况。
当集群 master 候选数量不小于 3 个时,可以通过设置最少投票通过数量(discovery.zen.minimum_master_nodes)超过所有候选节点一半以上来解决脑裂问题;
当候选数量为两个时,只能修改为唯一的一个 master 候选,其他作为 data 节点,避免脑裂问题。
8. 详细描述一下ES索引文档的过程?
这里的索引文档应该理解为文档写入 ES,创建索引的过程。
第一步:客户端向集群某节点写入数据,发送请求。(如果没有指定路由/协调节点,请求的节点扮演协调节点的角色。)
第二步:协调节点接受到请求后,默认使用文档 ID 参与计算(也支持通过 routing),得到该文档属于哪个分片。随后请求会被转到另外的节点。
本文详细梳理了24道关于Elasticsearch(ES)的面试题,涵盖ES的基本概念、安装启动、倒排索引、主节点选举、脑裂问题解决、索引文档过程、更新删除机制、搜索流程、索引分片和副本、查询类型、系统优化等方面,旨在帮助读者深入理解ES的工作原理和实践技巧。
最低0.47元/天 解锁文章
5376

被折叠的 条评论
为什么被折叠?



