严蔚敏数据结构:链表实现一元多项式相加

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_15037231/article/details/51901700
一、基本概念

1、多项式pn(x)可表示成:  pn(x)=a0+a1x+a2x2+…+anxn。

listP={(a0,e0),(a1,e1),(a2,e2),…,(an,en) }。在这种线性表描述中,各个结点包括两个数据域,对应的类型描述为:

typedef struct node

{ double coef;            //系数为双精度型

  int expn;                //指数为正整型
  struct node *next;    //指针域
}polynode;          




二、算法思想
对两个一元多项式进行相加操作的运算规则是:假设指针qa和qb分别指向多项式A(x)和B(x)中当前进行比较的某个结点,则需比较两个结点数据域的指数项,有三种情况:

(1) 指针qa所指结点的指数值<指针qb所指结点的指数值时,则保留qa指针所指向的结点,qa指针后移;
(2) 指针qa所指结点的指数值>指针qb所指结点的指数值时,则将qb指针所指向的结点插入到qa所指结点前,qb指针后移;
(3) 指针qa所指结点的指数值=指针qb所指结点的指数值时,将两个结点中的系数相加。若和不为零,则修改qa所指结点的系数值,同时释放qb所指结点;反之,从多项式A (x)的链表中删除相应结点,并释放指针qa和qb所指结点。



#include "stdio.h"
#include "stdlib.h"
#define OK 1
#define ERROR -1
#define FALSE 0
#define TRUE 2
typedef int Status;

typedef struct
{
float coef; //系数
int expn;   //指数
}term,ElemType;

typedef struct LNode
{
ElemType data;
struct LNode *next;
}*Link,*Position;


typedef struct
{
Link head,tail;
int len;
}LinkList;


typedef LinkList polynomial; //用带头结点的有序链表表示多项式


int cmp(term a,term b)
{
if(a.expn<b.expn) return -1;
else if(a.expn==b.expn) return 0;
else return 1;
}//cmp

Status InitList(polynomial &P)
{//构造一下空的线性链表
Link p;
p=(Link)malloc(sizeof(LNode));//生成头结点
if(p)
  {
   p->next=NULL;
   P.head=P.tail=p;
   P.len=0;
   return OK;
  }//
else return ERROR;
}//InitList


Position GetHead(polynomial P)
{
return P.head;
}//Position


Status SetCurElem(Position h,term e)
{
h->data=e;
return OK;
}//SetCurElem


Status LocateElem(LinkList P,ElemType e,Position &q,int(*cmp)(ElemType,ElemType))
{
Link p=P.head,pp;
do
  {
  pp=p;
  p=p->next;
  }while(p&&(cmp(p->data,e)<0));

  if(!p||cmp(p->data,e)>0)
  {
  q=pp;
  return FALSE;
  }//if

  else //find it
  {
  q=p;
  return TRUE;
  }//else
}


Status MakeNode(Link &p,ElemType e)
{
p=(Link)malloc(sizeof(LNode));
if(!p) return ERROR;
p->data=e;
return OK;
}//MakeNode


 


Status InsFirst(LinkList &P,Link h,Link s)
{
s->next=h->next;
h->next=s;
if(h==P.tail)
P.tail=h->next;
++P.len;
return OK;
}//InsFirst


 


void CreatPolyn(polynomial &P,int m)

{//输入m项的指数及系数,建立表示一元多项式的有序链表P
InitList(P);
Position h,q,s;
h=GetHead(P); //h指向P的头结点
term e;
e.coef=0.0;
e.expn=-1;
SetCurElem(h,e);//设置头结点的数据元素
printf("input the the value of m(indicate how many items)\n");
scanf("%d",&m);
printf("input (%d) ceof,expn(separated by ,)\n",m);
for(int i=1;i<=m;++i)
  {
  scanf("%f,%d",&e.coef,&e.expn);
  if(!LocateElem(P,e,q,cmp))
    {
    if(MakeNode(s,e)) InsFirst(P,q,s);
    }//if不存在,则生成新结点并插入
  }//for
}//CreatPolyn


Position NextPos(Link p)
{
return p->next;
}//NextPos


ElemType GetCurElem(Link p)
{
return p->data;
}//GetCurElem



Status DelFirst(LinkList L,Link h,Link &q)
{
q=h->next;
if(q)//非空链表
  {
   h->next=q->next;
   if(!h->next) //删除尾结点
          L.tail=h;
   L.len--;
   return OK;
  }//if

else return FALSE; //链表空

}//DelFirst


 


void FreeNode(Link &p)
{
free(p);
p=NULL;
}//FreeNode


Status ListEmpty(LinkList L)
{
if(L.len)
       return FALSE;
else return TRUE;
}//ListEmpty


Status Append(LinkList &L,Link s)
{
int i=1;
L.tail->next=s;
while(s->next)
  {
  s=s->next;
  i++;
  }//while

L.tail=s;
L.len+=i;
return OK;
}//Append


void PrintPolyn(polynomial P)
{
Link q;
q=P.head->next;
printf("系数  指数\n");
while(q)
  {
   printf("%f   %d\n",q->data.coef,q->data.expn);
   q=q->next;
  }//while
}//PrintPolyn



Status ClearList(LinkList &L)
{
Link q,p;
if(L.head!=L.tail)
  {
   p=q=L.head->next;
   L.head->next=NULL;
   while(p!=L.tail)
   {
   p=q->next;
  free(q);
   q=p;
   }//while
   free(q);
   L.tail=L.head;
   L.len=0;

  }//if
return OK;
}//ClearList




Status DestroyPolyn(LinkList &L)
{ // 销毁线性链表L,L不再存在
   ClearList(L); // 清空链表
   FreeNode(L.head);
   L.tail=NULL;
   L.len=0;
   return OK;


}//DestroyList


 void AddPolyn(polynomial &Pa,polynomial &Pb)

 { // 多项式加法:Pa=Pa+Pb,并销毁一元多项式Pb
   Position ha,hb,qa,qb;
   term a,b;
   ha=GetHead(Pa);
   hb=GetHead(Pb); // ha和hb分别指向Pa和Pb的头结点
   qa=NextPos(ha);
   qb=NextPos(hb); // qa和qb分别指向Pa和Pb中当前结点(现为第一个结点)
   while(qa&&qb)
   { // Pa和Pb均非空且ha没指向尾结点(qa!=0)
     a=GetCurElem(qa);
     b=GetCurElem(qb); // a和b为两表中当前比较元素
     switch(cmp(a,b))
     {
       case -1:ha=qa; // 多项式Pa中当前结点的指数值小
               qa=NextPos(ha); // ha和qa均向后移一个结点
               break;
       case 0: qa->data.coef+=qb->data.coef;
              // 两者的指数值相等,修改Pa当前结点的系数值
               if(qa->data.coef==0) // 删除多项式Pa中当前结点
               {
                 DelFirst(Pa,ha,qa);
                 FreeNode(qa);
               }
              else
               ha=qa;
               DelFirst(Pb,hb,qb);
               FreeNode(qb);
             qb=NextPos(hb);
               qa=NextPos(ha);
               break;


       case 1: DelFirst(Pb,hb,qb); // 多项式Pb中当前结点的指数值小
               InsFirst(Pa,ha,qb);
               ha=ha->next;
               qb=NextPos(hb);
     }
   }
   if(!ListEmpty(Pb))
   {
     Pb.tail=hb;
     Append(Pa,qb); // 链接Pb中剩余结点
   }
   DestroyPolyn(Pb); // 销毁Pb
 }



int main()
{
polynomial Pa,Pb;
int m;
CreatPolyn(Pa,m);
PrintPolyn(Pa);
printf("Pa.len: %d\n",Pa.len);
CreatPolyn(Pb,m);
PrintPolyn(Pb);
printf("Pb.len: %d\n",Pb.len);
AddPolyn(Pa,Pb);
PrintPolyn(Pa);
printf("Pa.len: %d\n",Pa.len);
return 1;
}




展开阅读全文

没有更多推荐了,返回首页