斜阳雨陌

再不做乞求命运怜惜的弱者,一定要做主宰命运的王。

完全解析struct和typedef struct

struct和typedef struct 分三块来讲述:   1 首先://注意在C和C++里不同     在C中定义一个结构体类型要用typedef:     typedef struct Student     {     int a;     }Stu;     于是在...

2016-09-12 20:56:23

阅读数:151

评论数:0

算法性能评估-时间复杂度

时间复杂度是用来评估算法性能的一个重要指标,有以下对应的关系。 1 (1) 1 表示常数。     程序执行的最大次数是可以估计到的,也就是说是一个常数。 (2) log(n)     如果一个程序的运行时间是对数级的,则随着N的增大程序会渐渐慢下来,如果一个程序将...

2016-09-11 21:11:18

阅读数:190

评论数:0

层次遍历二叉树的方法(递归,队列,指针)

给定一棵二叉树,要求进行分层遍历,每层的节点值单独打印一行,下图给出事例结构: 对此二叉树遍历的结果应该是: 1, 2 , 3 4, 5, 6 7, 8 第一种方法,就是利用递归的方法,按层进行打印,我们把根节点当做第0层,之后层次依次增加,如果我们...

2016-09-10 22:00:27

阅读数:282

评论数:0

二叉树非递归后序遍历算法

与正常的非递归中序遍历算法不同于两点: 一  比正常的中序遍历算法多了对数据元素的标记。        在压数据元素入栈(标记记为0,用来表示访问了其左子树)时标记,       还有访问完左子树利用gettop()获取双亲通过p=p->rchild进一步访问右子树(标记为1,表示访问了该数...

2016-09-09 21:31:51

阅读数:169

评论数:0

空指针入栈问题

空指针和数据元素一样能够进栈。并且如果栈原来为空,压入空指针后栈就不会为空了。空指针一旦被赋予指针,如果是在32位机上则占四个字节。只不过是没有指向堆内存中的任何数据。而空指针已经压进栈了,不加以释放就一直存在。

2016-09-08 20:29:07

阅读数:203

评论数:0

stack堆栈简介

stack堆栈简介     堆栈是一个线性表,插入和删除只在表的一端进行。这一端称为栈顶(Stack Top),另一端则为栈底(Stack Bottom)。堆栈的元素插入称为入栈,元素的删除称为出栈。由于元素的入栈和出栈总在栈顶进行,因此,堆栈是一个后进先出(Last In First Ou...

2016-09-07 21:45:58

阅读数:114

评论数:0

遍历二叉树的全部方法(递归+非递归)

#include     #include     #include     using namespace std;          //二叉树结点的描述     typedef struct BiTNode   {         char data;         struct BiTN...

2016-09-07 21:31:44

阅读数:141

评论数:0

二叉树的递归遍历(先序,中序,后序)

#include "stdio.h" #include "malloc.h" #define M 100 typedef struct node {  /* 采用二叉链表存储结构 */    char data;    struct node *lchild...

2016-09-07 20:56:55

阅读数:240

评论数:0

二叉树、树和有序树的区别

树:子树没有左右之分 二叉树、有序树:左右有序 二叉树与有序树:在只有一棵树的情况下,二叉树有左右之分、有序树无左右之分 另外:二叉树是有序的,可以为空或一个根节点以及两个分别称为左子树和右子树的互不相交的二叉树组成。

2016-09-06 20:28:02

阅读数:5251

评论数:0

由树转化为二叉树

对于树来说,在满足树的条件下可以是任意形状,一个结点可以有任意多个孩子,显然处理起来非常复杂,去研究相关的性质和算法会很不容易。有没有简单的算法来解决对树的处理的难题呢? 我们还介绍过二叉树,尽管它也是树形结构,但由于每个结点的度最多为2,变化相对简单,因此很多二叉树的性质和算法都被研究出来...

2016-09-03 21:01:16

阅读数:431

评论数:0

如何确定并重构一棵二叉树

遍历序列唯一确定二叉树的问题 数据结构的基础知识中重要的一点就是能否根据两种不同遍历序列的组合(有三种:前序+中序,前序+后序,中序+后序),唯一的确定一棵二叉树。然后就是根据二叉树的不同遍历序列(前序、中序、后序),重构二叉树。 下面是这个问题的证明与结论: ①给定二叉...

2016-09-02 20:24:54

阅读数:223

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭