Numpy之random学习

  • numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点数组。
#numpy.random.rand(d0, d1, ..., dn)  
import numpy as np  
#无参  
np.random.rand()#生成生成[0,1)之间随机浮点数  
type(np.random.rand())#float  
#d0,d1....表示传入的数组形状  
#一个参数  
np.random.rand(1)#array([ 0.44280931])  
type(np.random.rand(1))#numpy.ndarray  
np.random.rand(5)#生成一个形状为5的一维数组  
#两个参数  
np.random.rand(2,3)#生成2x3的二维数组  
#np.random.rand((2,3))#报错,参数必须是整数,不能是元组
  • numpy.random.randn(d0, d1, ..., dn):生成一个浮点数或N维浮点数组,取数范围:正态分布的随机样本数。
#numpy.random.randn(d0, d1, ..., dn)  
import numpy as np  
#无参  
np.random.randn()#1.4872544578730051,不一定是[0,1)之间的随机数  
#一个参数  
np.random.randn(1)  
np.random.randn(5)#生成形状为5的一维数组  
#两个参数  
np.random.randn(2,3)#生成2x3数组  
#np.random.randn((2,3))#报错,参数必须是整数
  • numpy.random.standard_normal(size=None):生产一个浮点数或N维浮点数组,取数范围:标准正态分布随机样本
import numpy as np  
#numpy.random.standard_normal(size=None)  
#size为整数  
np.random.standard_normal(2)#array([-2.04606393, -1.05720303])  
#size为整数序列  
np.random.standard_normal((2,3))  
np.random.standard_normal([2,3]).shape#(2, 3) 
  • numpy.random.randint(low, high=None, size=None, dtype='l'):生成一个整数或N维整数数组,取数范围:若high不为None时,取[low,high)之间随机整数,否则取值[0,low)之间随机整数。
#numpy.random.randint(low, high=None, size=None, dtype='l')  
import numpy as np  
#low=2  
np.random.randint(2)#生成一个[0,2)之间随机整数  
#low=2,size=5  
np.random.randint(2,size=5)#array([0, 1, 1, 0, 1])  
#low=2,high=2  
#np.random.randint(2,2)#报错,high必须大于low  
#low=2,high=6  
np.random.randint(2,6)#生成一个[2,6)之间随机整数  
#low=2,high=6,size=5  
np.random.randint(2,6,size=5)#生成形状为5的一维整数数组  
#size为整数元组  
np.random.randint(2,size=(2,3))#生成一个2x3整数数组,取数范围:[0,2)随机整数  
np.random.randint(2,6,(2,3))#生成一个2x3整数数组,取值范围:[2,6)随机整数  
#dtype参数:只能是int类型  
np.random.randint(2,dtype='int32')  
np.random.randint(2,dtype=np.int32)
  • numpy.random.random_integers(low, high=None, size=None):生成一个整数或一个N维整数数组,取值范围:若high不为None,则取[low,high]之间随机整数,否则取[1,low]之间随机整数。
#numpy.random.random_integers(low, high=None, size=None)  
import numpy as np  
#low=2  
np.random.random_integers(2)#生成一个[1,2]之间随机整数  
#low=2、size=5  
np.random.random_integers(2,size=5)#array([2, 1, 1, 1, 1])  
#low=2、high=6  
np.random.random_integers(2,6)#生成一个[2,6]之间随机整数  
#low=2、high=6、size=5  
np.random.random_integers(2,6,size=5)#生成一个形状为5的一维整数数组组  
#size为整数元组  
np.random.random_integers(2,size=(2,3))#生成一个2x3数组,取数范围:[1,2]随机整数  
np.random.random_integers(2,6,(2,3))#生成一个2x3数组,取数范围:[2,6]随机整数  
  • numpy.random.random_sample(size=None):生成一个[0,1)之间随机浮点数或N维浮点数组。
#numpy.random.random_sample(size=None)  
import numpy as np  
#size=None  
np.random.random_sample()#生成一个[0,1)之间随机浮点数  
#size=2  
np.random.random_sample(2)#生成shape=2的一维数组  
#size为整数元组  
np.random.random_sample((2,))#等同np.random.random_sample(2)  
#np.random.random_sample((,2))#报错  
np.random.random_sample((2,3))#生成2x3数组  
np.random.random_sample((3,2,2))#3x2x2数组  
  • numpy.random.choice(a, size=None, replace=True, p=None):从序列中获取元素,若a为整数,元素取值为np.arange(a)中随机数;若a为数组,取值为a数组元素中随机元素。
#numpy.random.choice(a, size=None, replace=True, p=None)  
import numpy as np  
#a为整数,size为None  
np.random.choice(2)#生成一个arange(2)中的随机数  
#a为整数,size为整数  
np.random.choice(2,2)#生成一个shape=2一维数组  
#a为整数,size为整数元组  
np.random.choice(5,(2,3))#生成一个2x3数组  
#a为数组,size为None  
np.random.choice(np.array(['a','b','c','f']))#生成一个np.array(['a','b','c','f']中随机元素  
#a为数组,size为整数  
np.random.choice(5,(2,3))#生成2x3数组  
#a为数组,size为整数元组  
np.random.choice(np.array(['a','b','c','f']),(2,3))#生成2x3数组  
#p参数:可以理解成a中元素出现的概率,p的长度和a的长度必须相同,且p中元素之和为1,否则报错  
#np.random.choice(2,p=[1])#报错,a和p长度不一致  
np.random.choice(5,p=[0,0,0,0,1])#生成的始终是4  
np.random.choice(5,3,p=[0,0.5,0.5,0,0])#生成shape=3的一维数组,元素取值为1或2的随机数 
  • numpy.random.shuffle(x):对X进行重排序,如果X为多维数组,只沿第一条轴洗牌,输出为None。
#numpy.random.shuffle(x)  
import numpy as np  
list1 = [1,2,3,4,5]  
np.random.shuffle(list1)#输出None  
list1#[1, 2, 5, 3, 4],原序列的顺序也被修改  
arr = np.arange(9).reshape(3,3)  
np.random.shuffle(arr)#对于多维数组,只沿着第一条轴打乱顺序  
  • numpy.random.permutation(x):与numpy.random.shuffle(x)函数功能相同,两者区别:peumutation(x)不会修改X的顺序
#numpy.random.permutation(x)  
import numpy as np  
#x=5  
np.random.permutation(5)#生成一个arange(5)随机顺序的数组  
#x为列表或元组  
list1 = [1,2,3,4]  
np.random.permutation(list1)#array([2, 1, 4, 3])  
#list1#[1, 2, 3, 4]  
#x为数组  
arr = np.arange(9)  
np.random.permutation(arr)  
arr2 = np.arange(9).reshape(3,3)  
np.random.permutation(arr2)#对于多维数组,只会沿着第一条轴打乱顺序

random.random()方法用于生成一个0到1的随机浮点数:0<=n<1.0

>>> import random
>>> print "random():",random.random()
random(): 0.809221478124
>>> print "random():",random.random()
random(): 0.877521147987

random.uniform(a,b):用于生成一个指定范围内的随机浮点数,两格参数中,其中一个是上限,一个是下限。如果a>b,则生成的随机数n,即b<=n<=a;如果a<b,则a<=n<=b。

>>> import random
>>> print random.uniform(10,20)
13.2960134544
>>> print random.uniform(20,10)
15.9038751838

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值