神经网络与深度学习
人工智能博士
王博Kings,985AI博士在读,CSDN博客专家,华为云专家,是《机器学习手推笔记》、《深度学习手推笔记》等作者;在人工智能、计算机视觉、无人驾驶等具有丰富的经验。
展开
-
《神经网络与深度学习》基本学习内容总体概述
目录 神经网络基础: 神经网络进阶: 深度学习网络: 神经网络应用: 深度学习落地实现: 神经网络基础: 单层感知器 线性神经网络 BP 神经网络 Hopfields神经网络 径向基神经网络 PCA和SVM 神经网络进阶: 自编码器 稀疏自编码器 玻尔兹曼机 受限玻尔兹曼机 递归神经 网络 自组织竞争神经网络 深度学习网络: 深度置信网络 卷积神经网络 ...原创 2019-01-19 16:03:46 · 1915 阅读 · 0 评论 -
《神经网络与深度学习》~人工神经网络激荡70年
目录 M-P模型 Hebb学习规则 Rosenblatt感知器 Minsky的打击 复兴时期! 深度学习的突破 M-P模型 1943年神经元解剖学家McCulloch和数学天才Pitts发表文章提出神经元的数学描述和结构 神经元遵循“全或无”原则 证明了只要足够的简单神经元,在相互连接并同步运行的情况下,可以模拟任何计算函数 开创工作被认为是人工神经网络的起点 ...原创 2019-01-20 17:30:27 · 2191 阅读 · 0 评论 -
《神经网络与深度学习》~人工神经网络+单层(Perceptron)感知器原理及matlab实现
目录 人工神经网络-->>神经元 人工神经网络(ANN) 神经元仿生:单层感知器 性能评估函数: MATLAB实际操作实例 人工神经网络-->>神经元 人工神经网络(ANN) 是迄今为止几乎最为成功的仿生学数学模型,是机器学习领域的热点,符合智能化机器的时代潮流 有统一的模型框架,很多算法问题可以归为神经网络系统学习问题加以解决(SVM支持向...原创 2019-01-21 17:48:05 · 3051 阅读 · 0 评论