3、理论分析
在本节中,我们考虑有限样本的影响。这个问题主要是由Bermejo[4]从高阶统计的角度来讨论的。在此,我们从二阶统计量的角度讨论双源信号情况下的问题。
用
V
V
V表示预白化矩阵,用
A
A
A表示未知混合矩阵,则
V
A
VA
VA是正交的。因此,函数(2)变成
J
(
w
)
=
w
T
E
{
(
V
A
)
s
(
k
)
s
(
k
−
τ
∗
)
T
(
V
A
)
T
}
w
=
q
T
R
s
(
τ
∗
)
q
(
8
)
J(w)=w^{T}E\{(VA)s(k)s(k-\tau^{*})^{T}(VA)^{T}\}w= q^{T}R_{s}(\tau^{*})q \\(8)
J(w)=wTE{(VA)s(k)s(k−τ∗)T(VA)T}w=qTRs(τ∗)q(8)
其中
q
=
w
T
V
A
q=w^{T}VA
q=wTVA,
R
s
(
τ
∗
)
=
E
{
s
(
k
)
s
(
k
−
τ
∗
)
T
}
R_{s}(\tau^{*})=E\{s(k)s(k-\tau^{*})^{T}\}
Rs(τ∗)=E{s(k)s(k−τ∗)T},因此,最大化(2)与最大化(8)在约束
∣
∣
q
∣
∣
2
=
1
||q||^{2}=1
∣∣q∣∣2=1下等价。由于上述有限样本的影响,
R
s
(
τ
∗
)
≠
I
R_{s}(\tau^{*})\neq I
Rs(τ∗)=I
当有两个源信号时,(8)的最大值可以表示为的最大值
J
(
q
1
,
q
2
)
=
a
q
1
2
+
b
q
2
2
+
c
q
1
q
2
(
9
)
J(q_{1},q_{2})=aq_{1}^{2}+bq_{2}^{2}+cq_{1}q_{2} \\(9)
J(q1,q2)=aq12+bq22+cq1q2(9)
在
q
1
2
+
q
2
2
=
1
q_{1}^{2}+q_{2}^{2}=1
q12+q22=1约束下,其中
q
=
[
q
1
,
q
2
]
T
,
a
=
E
{
s
1
(
k
)
s
1
(
k
−
τ
∗
)
}
,
b
=
E
{
s
2
(
k
)
s
2
(
k
−
τ
∗
)
}
,
c
=
E
{
s
1
(
k
)
s
2
(
k
−
τ
∗
)
}
+
E
{
s
2
(
k
)
s
1
(
k
−
τ
∗
)
}
q=[q_{1},q_{2}]^{T},a=E\{s_{1}(k)s_{1}(k-\tau^{*})\},b=E\{s_{2}(k)s_{2}(k-\tau^{*})\},c=E\{s_{1}(k)s_{2}(k-\tau^{*})\}+E\{s_{2}(k)s_{1}(k-\tau^{*})\}
q=[q1,q2]T,a=E{s1(k)s1(k−τ∗)},b=E{s2(k)s2(k−τ∗)},c=E{s1(k)s2(k−τ∗)}+E{s2(k)s1(k−τ∗)},其中
s
1
s_{1}
s1是需要的周期为
τ
∗
\tau^{*}
τ∗信号。一般我们有
a
>
0
a>0
a>0和
a
>
b
a>b
a>b。
如果 c = 0 c=0 c=0,推出计算出 s 1 s_{1} s1和 s 2 s_{2} s2的互相关值为 0 0 0(理想情况),(9)最优解为 q 1 = ± 1 , q 2 = 0 q_{1}=\pm1,q_{2}=0 q1=±1,q2=0,提出信号为 y ( k ) = w T x ( k ) = q T s ( k ) = q 1 s 1 ( k ) + q 2 s 2 ( k ) = ± s 1 ( k ) y(k)=w^{T}x(k)=q^{T}s(k)=q_{1}s_{1}(k)+q_{2}s_{2}(k)=\pm s_{1}(k) y(k)=wTx(k)=qTs(k)=q1s1(k)+q2s2(k)=±s1(k)显然,在这种情况下,期望的源信号是完美的提取。
但实际上是
c
≠
0
c\neq 0
c=0。对于
c
>
0
c>0
c>0,(9)的解为
{
q
1
=
±
h
+
h
2
+
1
1
+
(
h
+
h
2
+
1
)
2
q
1
=
±
1
1
+
(
h
+
h
2
+
1
)
2
(
10
)
\left\{\begin{matrix} q_{1}=\pm\frac{h+\sqrt{h^{2}+1}}{\sqrt{1+(h+\sqrt{h^{2}+1})^{2}}} \\ q_{1}=\pm\frac{1}{\sqrt{1+(h+\sqrt{h^{2}+1})^{2}}} \end{matrix}\right. \\(10)
⎩⎨⎧q1=±1+(h+h2+1)2h+h2+1q1=±1+(h+h2+1)21(10)
其中
h
=
(
a
−
b
)
/
c
h=(a-b)/c
h=(a−b)/c,对于
c
<
0
c<0
c<0,解为
{
q
1
=
±
h
−
h
2
+
1
1
+
(
h
−
h
2
+
1
)
2
q
1
=
±
1
1
+
(
h
−
h
2
+
1
)
2
(
11
)
\left\{\begin{matrix} q_{1}=\pm\frac{h-\sqrt{h^{2}+1}}{\sqrt{1+(h-\sqrt{h^{2}+1})^{2}}} \\ q_{1}=\pm\frac{1}{\sqrt{1+(h-\sqrt{h^{2}+1})^{2}}} \end{matrix}\right. \\(11)
⎩⎨⎧q1=±1+(h−h2+1)2h−h2+1q1=±1+(h−h2+1)21(11)
由于
q
=
w
T
V
A
q=w^{T}VA
q=wTVA是一个全局向量,因此给出了一个较好的提取性能指标
P
I
1
=
1
N
−
1
(
∑
i
=
1
N
q
i
2
m
a
x
i
q
i
2
−
1
)
(
12
)
PI_{1}=\frac{1}{N-1}(\sum_{i=1}^{N}\frac{q_{i}^{2}}{max_{i}q_{i}^{2}}-1) \\(12)
PI1=N−11(i=1∑Nmaxiqi2qi2−1)(12)
对任意向量
q
=
[
q
1
.
.
.
.
q
N
]
T
q=[q_{1}....q_{N}]^{T}
q=[q1....qN]T取值范围为
[
0
,
1
]
[0,1]
[0,1],
P
I
1
PI_{1}
PI1越小,提取性能越好。在有两个源信号的情况下,在不失一般性的情况下,我们考虑
c
>
0
c>0
c>0的情况,其中
P
I
1
=
(
a
−
b
c
+
(
a
−
b
c
)
2
+
1
−
2
(
13
)
PI_{1}=(\frac{a-b}{c}+\sqrt{(\frac{a-b}{c})^{2}+1}^{-2} \\(13)
PI1=(ca−b+(ca−b)2+1−2(13)
因此,为了提高提取性能,我们应该提高
a
a
a的值,降低
b
b
b和
∣
c
∣
|c|
∣c∣的值(结合
c
<
0
c<0
c<0的结果)。现在考虑修正后的目标函数(7),其等价于
J
(
w
)
~
=
1
P
q
T
(
∑
i
=
1
P
E
{
s
(
k
)
s
(
k
−
i
τ
∗
)
}
)
q
(
14
)
\tilde{J(w)}=\frac{1}{P}q^{T}(\sum_{i=1}^{P}E\{s(k)s(k-i\tau^{*})\})q \\(14)
J(w)~=P1qT(i=1∑PE{s(k)s(k−iτ∗)})q(14)
其中
a
~
=
∑
i
=
1
P
E
{
s
1
(
k
)
s
1
(
k
−
i
τ
∗
)
}
/
P
,
b
~
=
∑
i
=
1
P
E
{
s
2
(
k
)
s
2
(
k
−
i
τ
∗
)
}
/
P
,
c
~
=
∑
i
=
1
P
E
{
s
1
(
k
)
s
2
(
k
−
i
τ
∗
)
+
s
2
(
k
)
s
1
(
k
−
i
τ
∗
)
}
/
P
\tilde{a}=\sum_{i=1}^{P}E\{s_{1}(k)s_{1}(k-i\tau^{*})\}/P, \tilde{b}=\sum_{i=1}^{P}E\{s_{2}(k)s_{2}(k-i\tau^{*})\}/P,\tilde{c}=\sum_{i=1}^{P}E\{s_{1}(k)s_{2}(k-i\tau^{*})+s_{2}(k)s_{1}(k-i\tau^{*})\}/P
a~=∑i=1PE{s1(k)s1(k−iτ∗)}/P,b~=∑i=1PE{s2(k)s2(k−iτ∗)}/P,c~=∑i=1PE{s1(k)s2(k−iτ∗)+s2(k)s1(k−iτ∗)}/P,注意
τ
∗
\tau^{*}
τ∗是
s
1
s_{1}
s1基频。
因此,相对于(9)中的 a , b , c a,b,c a,b,c, b ~ , ∣ c ~ ∣ \tilde{b},|\tilde{c}| b~,∣c~∣一般随着P的增加有快速下降的趋势,而 a ~ \tilde{a} a~趋于不变(或以相对较慢的速度下降)。因此,本文算法(6)的 P I 1 PI_{1} PI1趋于小于算法(5)的 P I 1 PI_{1} PI1,这意味着提取质量得到了提高,这将通过下面的仿真验证。
4、计算机模拟
4.3、对真实心电图数据进行实验

5、结论
本文提出了一种基于多个延迟协方差矩阵特征值分解的快速鲁棒源提取算法。理论分析和仿真验证了该方法的有效性和稳定性。很清楚地看到,提出的算法涉及到主成分分析(PCA)。因此许多关于PCA的结果[6,11,8]可以用来改进算法,这是我们未来的工作。
值得注意的是,利用特征值分解发展算法是BSE和BSS的发展趋势之一。为了获得满意的结果,之前的算法[10]使用了大量的观测值的延迟协方差矩阵,比如500个矩阵,从而降低了算法的效率。这种情况也出现在基于联合对角化的算法中[3,5]。然而,本文指出,利用先验信息可以大大减少使用矩阵的数量。关于这个主题的另一篇文章参考[13,9]。

被折叠的 条评论
为什么被折叠?



