数据分析04绘图和可视化之Matplotlib

这篇博客详细介绍了如何使用Matplotlib进行数据可视化,包括简单的plot绘图、subplot多图展示、Pandas的Series和DataFrame绘图,以及直方图和密度图的绘制。通过实例展示了各种图表的生成过程。
摘要由CSDN通过智能技术生成

plot Matplotlib简单绘图

#导入库
import numpy as np
import matplotlib.pyplot as plt
#两个list的取值范围必须一样
a = [1, 2, 3]
b = [4, 5, 6]
#生成可视化的图(横轴,纵轴),返回一个对象(2D线)
#用plt.show()方法可以直接绘图
plt.plot(a, b)
'''
得到
[<matplotlib.lines.Line2D at 0x113265a90>]
'''
#不调用plt.show()的方法,前加一个魔法函数
%matplotlib inline
#直接得到图像
plt.plot(a, b)

得到
[<matplotlib.lines.Line2D at 0x1133bb8d0>]
在这里插入图片描述

#另一个魔法函数,得到一个语法执行时间
%timeit np.arange(10)
'''
得到
The slowest run took 22.76 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 616 ns per loop
'''
#plt.plot格式,横轴,纵轴,线风格,b--代表蓝色虚线
plt.plot(a, b, '--')

得到
[<matplotlib.lines.Line2D at 0x113dda5c0>]
在这里插入图片描述

#增加两个list
c = [10,8,6]
d = [1,8,3]
#绘图参数,第一组横轴纵轴红色--线,第二组横轴纵轴蓝色*线代表点
plt.plot(a,b, 'r--', c,d, 'b*')

得到
[<matplotlib.lines.Line2D at 0x11412c780>,
<matplotlib.lines.Line2D at 0x11412c978>]
在这里插入图片描述

#得到一组arrange
t = np.arange(0.0, 2.0, 0.1)
t.size
'''
得到
20
'''
#以t*π为取值的sin曲线
s = np.sin(t*np.pi)
s.size
'''
得到
20
'''
#绘制第一条红色--线,用横轴t纵轴s得到sin曲线,命名aaaa
plt.plot(t,s,'r--',label='aaaa')
#绘制第二条蓝色--线,用横轴t*2纵轴s得到曲线,命名bbbb
plt.plot(t*2, s, 'b--', label='bbbb')
#定义横轴名称
plt.xlabel('this is x')
#定义纵轴名称
plt.ylabel('this is y')
#定义图形名称
plt.title('this is a demo')
#显示图例
plt.legend()

得到
<matplotlib.legend.Legend at 0x11526ec18>
在这里插入图片描述

subplot Matplotlib简单绘图

#导入库
import numpy 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值