数字营销的十大悖论

悖论一:原生化与商业化

原生与商业化,不可兼得;怎样达到一个平衡点

  • 想要不带利益的原生UGC内容,就很难做到优秀的商业化
  • 好的商业化又会验证影响UGC的水准,掺杂了商业利益的内容,易被用户识别并唾弃

悖论二:隐私保护和数据应用

当前隐私保护和数据应用无法兼得的时代特征

  • 数据从发生到蔑视全部需要隐私和安全的保护
  • 怎么做到隐私保护的情况下,是数据获得应用造福人类

悖论三:“围墙花园”与“公域数据”

  • 各个数据控制者为拒绝数据分享而高筑的壁垒–“围墙花园”

  • 强化了强势媒体的垄断地位

  • 削弱企业(广告主)在“公域数据”的能力

  • 数据应用变得割裂,不得不与众多强势媒体合作,也变得彻底黑箱化

  • 围墙花园、过于一刀切的隐私保护,抑制了行业的活力和创造力

悖论四:精准与规模

精准和规模很难兼得,只能尽量使二者达到一个可接受的平衡程度

  • 外部流量红利是不能持续的
  • 高浓度的目标人群的数量总是有限的,以及流量市场本身的竞争性降低了获得精准的概率
  • 任何一个单一媒体的投放,即时在高精度技术水平下,也是一个不断衰减的规模曲线

悖论五:品牌和效果

  • 品牌和效果是数字营销的两端,品效合一不太可能在一次营销campaign中发生
  • 本质上只能有一个重要的核心目的

悖论六:作弊与反作弊

  • 存在即合理。
  • 作弊永远不可能被禁绝,也不可能被消灭。
  • 规则本身是死的,而人是活的。

悖论七:AI和HI

人工智能(AI)非常依赖(HI)

  • 在真正解放人的思考之前,AI需要大量人的思考参与其中
  • AI在很多场景下死板的,但能补强人工效率低下的问题;故采取AI打前阵,HI再精细化处理
  • AI的最大价值在于“学习”,但学习的成败,在于人告知机器“对”、“错”
  • 监督学习,监督即为对AI处理成功与否的判断

悖论八:搜索和信息流

  • 典型AI和HI结合的领域:信息流

  • 判断人的行为数据、兴趣,主动提供信息

  • 导致降低主动搜索需求,并降低搜索引擎的价值

  • 搜索的出路

  • 出路一:强化搜索体验,更容易找到真正有价值的最相关内容

  • 出路二:搜索引擎信息流化,搜索的同时留住用户,花费用户其他时间

悖论九:Local Host 和 SaaS

  • local host 带来“安全”感受,但并不是真正技术上的安全
  • SaaS 易实施、且成本低廉、维护方便、能始终保持最新的状态

悖论十:营销和运营

  • 运营究竟是什么?营销是否包含运营?反过来,营销又是否是运营的一部分?
  • 互联网的世界已经不再是流量为王的世界,而是“有效流量”为王的世界。
  • 为了营销而作的运营
发布了53 篇原创文章 · 获赞 33 · 访问量 5933
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术工厂 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览