11月全球数据库排名:PostgreSQL 一路高涨

DB-Engines 发布了 2017 年 11 月份的数据库排名。排前 20 名的数据库中,仅排名在第 15 位的 Splunk 和第 16 位的 HBase ,位置出现了互调,其他数据库排名未变。 

与上月相比,排名前三的 Oracle、MySQL 、Microsoft SQL Server 本月得分均出现增长。不过对比去年同期, Oracle 和 MySQL 仍有明显的下滑。 

PostgreSQL 近年来一直保持上升趋势,对比去年同期得分增长了 54.10,被众多开发者看好。 

刚刚拿到阿里领投的 2700 万美元 C 轮融资的 MariaDB 本月出现小幅下跌,保持在第18位。 

完整排名请看这里:http://db-engines.com/en/ranking 
前 3 名走势: 

PostgreSQL 走势: 

MariaDB 走势: 

DB-Engines 排名的数据依据 5 个不同的因素: 
  • Google 以及 Bing 搜索引擎的关键字搜索数量
  • Google Trends 的搜索数量
  • Indeed 网站中的职位搜索量
  • LinkedIn 中提到关键字的个人资料数
  • Stackoverflow 上相关的问题和关注者数量
这份榜单分析旨在为数据库相关从业人员提供一个技术方向的参考,其中涉及到的排名情况并非基于产品的技术先进程度或市场占有率等因素。无论排名先后,选择适合与企业业务需求相比配的技术,才是最重要的。
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)内容概要:本文档聚焦于五种优化算法(A、HO、CP、GOOSE、NRBO)与BP神经网络结合的回归预测性能比较研究,所有内容均基于Matlab代码实现。研究属于创新未发表成果,涵盖机器学习、深度学习、智能优化算法等多个科研方向的应用实例,尤其在时序预测、回归分析等领域。文档还列举了大量相关课题,如微电网多目标优化调度、储能选址定容、轴承故障诊断等,展示了广泛的科研应用场景和技术实现手段。; 适合人群:具备一定Matlab编程基础,从事科研或工程应用的研究人员,尤其是关注智能优化算法与神经网络结合应用的硕士、博士研究生及科研工作者。; 使用场景及目标:①用于科研项目中对比不同优化算法对BP神经网络回归预测性能的影响;②为相关领域如能源调度、故障诊断、负荷预测等提供算法实现参考与代码支持;③辅助学术论文撰写与实验验证。; 阅读建议:此资源以实际Matlab代码为核心,建议读者结合文档中提供的网盘链接获取完整代码资源,并在实践中运行和调试代码,深入理解各算法的实现细节与优化机制。同时建议按目录顺序系统学习,以便构建完整的知识体系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值