推荐系统
文章平均质量分 90
解决信息超载问题一个非常有潜力的办法是 [3] 推荐系统,它是根据用户的信息需求、兴趣等,将用户感兴趣的信息、产品等推荐给用户的个性化信息推荐系统。和搜索引擎相比推荐系统通过研究用户的兴趣偏好,进行个性化计算,由系统发现用户的兴趣点,从而引导用户发现自己的信息需求。
zxcodestudy
Get busy living or get busy dying
展开
-
读书笔记 ---《推荐系统实践》第五章
利用上下文信息5.1 时间上下文信息5.1.1 时间效应简介时间是一种重要的上下文信息,对用户兴趣有着深入而广泛的影响。一般认为,时间信息对 用户兴趣的影响表现在以下几个方面:用户兴趣是变化的物品也是有生命周期的季节效应5.1.2 时间效应举例5.1.3 系统时间特性的分析在给定时间信息后,推荐系统从一个静态系统变成了一个时变的系统,而用户行为数据也变成了时间序列。研究一个时变系统,需要首先研究这个系统的时间特性。包含时间信息的用户行为数据集由一系列三元组构成,其中每个三元组(u,t,原创 2021-01-21 22:21:59 · 406 阅读 · 0 评论 -
读书笔记 ---《推荐系统实践》第四章
利用用户标签数据推荐系统的目的是联系用户的兴趣和物品,这种联系需要依赖不同的媒介。推荐系统基本上通过3种方式联系用户兴趣和物品:利用用户喜欢过的物品,给用户推荐与他喜欢过的物品相似的物品,这就是前面提到的基于物品的算法利用和用户兴趣相似的其他用户,给用户推荐那些和他们兴趣 爱好相似的其他用户喜欢的物品,这是前面提到的基于用户的协同过滤算法通过一些特征(feature )联系用户和物品,给用户推荐那些具有用户喜欢的特征的物品。这里的特征有不同的表现方式,比如可以表现为物品的属性集合,也可以表现为隐语原创 2021-01-19 23:52:50 · 455 阅读 · 0 评论 -
读书笔记 ---《推荐系统实践》第三章
推荐系统冷启动问题推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣,因此大量的用户行为数据就成为推荐系统的重要组成部分和先决条件。在开始阶段就希望有个性化推荐应用的网站来说,如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意就是冷启动的问题3.1 冷启动问题简介冷启动问题(coldstart)主要分3类:用户冷启动主要解决如何给新用户做个性化推荐的问题。当新用户到来时, 我们没有他的行为数据,所以也无法根据他的历史行为预测其兴趣物品冷启动主要解决如何将新的物原创 2021-01-18 23:22:45 · 231 阅读 · 0 评论 -
读书笔记 ---《推荐系统实践》第二章
利用用户行为数据基于用户行为分析的推荐算法是个性化推荐系统的重要算法,学术界一般将这种类型的算法称为协同过滤算法。协同过滤就是指用户可以齐心协力,通过不断地和网站互动,使自己的推荐列表能够不断过滤掉自己不感兴趣的物品,从而越来越满足自己的需求。2.1 用户行为数据简介用户行为数据在网站上最简单的存在形式就是日志。网站在运行过程中都产生大量原始日志 (raw log),并将其存储在文件系统中。很多互联网业务会把多种原始日志按照用户行为汇总成会话日志(session log),其中每个会话表示一次用户行为原创 2021-01-17 17:37:19 · 795 阅读 · 0 评论 -
读书笔记 ---《推荐系统实践》第一章
好的推荐系统1.1 什么是推荐系统随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载(information overload )的时代。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:对于信息消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让 自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决 这一矛盾的重要工具。推荐系统的任务就是联系用户和信息,一方面帮助用户发现对自己有价值 的信息,另一方面让信息能够展现原创 2021-01-16 23:41:11 · 663 阅读 · 1 评论
分享