样本数量远小于特征维度时PCA的计算方法

本文探讨了当样本数量小于特征维度时,如何利用PCA进行有效计算。通过使用源自数据的较小s×s协方差矩阵代替n×n协方差矩阵,可以显著减少计算时间和资源,尤其在特征维度远大于样本数的情况下,这种方法能有效提高效率。
摘要由CSDN通过智能技术生成

假定,我们希望应用一个PCA到s个n维矢量,xi,这里 s<n 。协方差矩阵大小为n×n,这可能非常大。然而,我们可以用一个来源于数据的更小的s×s矩阵来计算协方差矩阵的特征向量和特征值。因为一个特征向量的分解花费的时间和矩阵大小的立方成正比,这样做可以节省大量的时间。

S=DDT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值