假定,我们希望应用一个PCA到s个n维矢量,xi,这里 s<n 。协方差矩阵大小为n×n,这可能非常大。然而,我们可以用一个来源于数据的更小的s×s矩阵来计算协方差矩阵的特征向量和特征值。因为一个特征向量的分解花费的时间和矩阵大小的立方成正比,这样做可以节省大量的时间。
S=DDT
本文探讨了当样本数量小于特征维度时,如何利用PCA进行有效计算。通过使用源自数据的较小s×s协方差矩阵代替n×n协方差矩阵,可以显著减少计算时间和资源,尤其在特征维度远大于样本数的情况下,这种方法能有效提高效率。
假定,我们希望应用一个PCA到s个n维矢量,xi,这里 s<n 。协方差矩阵大小为n×n,这可能非常大。然而,我们可以用一个来源于数据的更小的s×s矩阵来计算协方差矩阵的特征向量和特征值。因为一个特征向量的分解花费的时间和矩阵大小的立方成正比,这样做可以节省大量的时间。

被折叠的 条评论
为什么被折叠?