1759:最长上升子序列 题解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_16964363/article/details/79192421

总时间限制: 
2000ms 
内存限制: 
65536kB
描述
一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1a2, ..., aN),我们可以得到一些上升的子序列(ai1ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
样例输入
7
1 7 3 5 9 4 8
样例输出
4
来源
翻译自 Northeastern Europe 2002, Far-Eastern Subregion 的比赛试题



【题解】

#include<cstdio>
int n,a[1100],d[1100]= {0},ans=0;
inline int max(int a,int b) {
	return a>b?a:b;
}
int main() {
	scanf("%d",&n);
	for(int i=0; i<n; i++)scanf("%d",&a[i]);
	for(int i=0; i<n; i++) {
		d[i]=1;
		for(int j=0; j<i; j++)
			if(a[i]>a[j])d[i]=max(d[i],d[j]+1);
		ans=max(ans,d[i]);
	}
	printf("%d\n",ans);

	return 0;
}


阅读更多

没有更多推荐了,返回首页