能量项链题解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_16964363/article/details/79389263

题目描述

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:

(4⊕1)=10*2*3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

输入输出格式

输入格式:
输入的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i<N< span>时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式:
输出只有一行,是一个正整数E(E≤2.1*10^9),为一个最优聚合顺序所释放的总能量。

输入输出样例

输入样例#1:
4
2 3 5 10
输出样例#1:
710
说明

NOIP 2006 提高组 第一题

【题解】看了一眼就知道了这是个区间DP问题。
于是就写出了方程
f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]+a[k1]a[k]a[k+1])
咳咳是错的
f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]+a[i]a[k+1]a[j+1])这才对呀。我也觉得自己很滑稽啊。果然自己写的是对的,但是。我交了程序只有10分。咳咳什么情况长时间调试后看了题解瞄了一下←_←居然a[i]表示的是头标记。写DP真的是有苦说不出呀!
可能是没午睡的缘故吧?

#include<cstdio>
#include<algorithm>
using namespace std;
int main() {
    int n,f[220][220]= {0},a[220],ans=0;
    scanf("%d",&n);
    for(int i=1; i<=n; i++) {
        scanf("%d",&a[i]);
        a[i+n]=a[i];
    }
    n<<=1;
    for(int len=2; len<=n/2; len++)
        for(int i=1; i+len-1<=n; i++) {
            int j=i+len-1;
            for(int k=j-1; k>=i; k--)
                f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]+a[i]*a[k+1]*a[j+1]);
        }
    n>>=1;
    for(int i=1; i<=n; i++)
        ans=max(ans,f[i][i+n-1]);
    printf("%d\n",ans);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页