[Matlab]切比雪夫Ⅰ型滤波器设计:低通、高通、带通和带阻(2)

[Matlab]切比雪夫Ⅰ型滤波器设计:低通、高通、带通和带阻-------(2)

​ 切比雪夫滤波器,又名“车比雪夫滤波器”,是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器来自切比雪夫分布,以“切比雪夫”命名,是用以纪念俄罗斯数学家巴夫尼提·列波维其·切比雪夫。

切比雪夫Ⅰ型滤波器特点:

​ 切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。

1、幅度特性是在一个频带内(通带或阻带)范围内具有等波纹特性;
2、Ⅰ型在通带范围内是等波纹的,在阻带范围内是单调的。

根据频率响应曲线波动位置的不同,切比雪夫滤波器可以分为以下两种:

I型切比雪夫滤波器

通带(或称“通频带”)上频率响应幅度等波纹波动的滤波器称为“I型切比雪夫滤波器”;

原始信号设定:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Cheby1Filter.m
%  切比雪夫Ⅰ型滤波器的设计
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
close all;
clc;

fs = 1000; %Hz 采样频率
Ts = 1/fs;
N  = 1000; %序列长度
t = (0:N-1)*Ts;
delta_f = 1*fs/N;
f1 = 50;
f2 = 100;
f3 = 200;
f4 = 400;
x1 = 2*0.5*sin(2*pi*f1*t);
x2 = 2*0.5*sin(2*pi*f2*t);
x3 = 2*0.5*sin(2*pi*f3*t);
x4 = 2*0.5*sin(2*pi*f4*t);
x = x1 + x2 + x3 + x4; %待处理信号由四个分量组成
 
X = fftshift(abs(fft(x)))/N;
X_angle = fftshift(angle(fft(x)));
f = (-N/2:N/2-1)*delta_f;
 
figure(1);
subplot(3,1,1);
plot(t,x);
title('原信号');
subplot(3,1,2);
plot(f,X);
grid on;
title('原信号频谱幅度特性');
subplot(3,1,3);
plot(f,X_angle);
title('原信号频谱相位特性');
grid on;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZDDVsYax-1573631016234)(G:\研究生\项目小组任务\笔记\第四周笔记\qubify.bmp)]

低通滤波器设计:

%设计一个切比雪夫低通滤波器,要求把50Hz的频率分量保留,其他分量滤掉
wp = 55/(fs/2);  %通带截止频率,取50~100中间的值,并对其归一化
ws = 90/(fs/2);  %阻带截止频率,取50~100中间的值,并对其归一化
alpha_p = 3; %通带允许最大衰减为 db
alpha_s = 40;%阻带允许最小衰减为 db
%获取阶数和截止频率
[ N1 wc1 ] = cheb1ord( wp , ws , alpha_p , alpha_s);
%获得转移函数系数
[ b a ] = cheby1(N1,alpha_p,wc1,'low');
%滤波
filter_lp_s = filter(b,a,x);
X_lp_s = fftshift(abs(fft(filter_lp_s)))/N;
X_lp_s_angle = fftshift(angle(fft(filter_lp_s)));
figure(2);
freqz(b,a); %滤波器频谱特性
figure(3);
subplot(3,1,1);
plot(t,filter_lp_s);
grid on;
title('低通滤波后时域图形');
subplot(3,1,2);
plot(f,X_lp_s);
title('低通滤波后频域幅度特性');
subplot(3,1,3);
plot(f,X_lp_s_angle);
title('低通滤波后频域相位特性');

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a6R66EbD-1573631016238)(G:\研究生\项目小组任务\笔记\第四周笔记\lowp.bmp)]

高通滤波器设计:

%设计一个高通滤波器,要求把400Hz的频率分量保留,其他分量滤掉
wp = 350/(fs/2);  %通带截止频率,取200~400中间的值,并对其归一化
ws = 380/(fs/2);  %阻带截止频率,取200~400中间的值,并对其归一化
alpha_p = 3; %通带允许最大衰减为  db
alpha_s = 20;%阻带允许最小衰减为  db
%获取阶数和截止频率
[ N2 wc2 ] = cheb1ord( wp , ws , alpha_p , alpha_s);
%获得转移函数系数
[ b a ] = cheby1(N2,alpha_p,wc2,'high');
%滤波
filter_hp_s = filter(b,a,x);
X_hp_s = fftshift(abs(fft(filter_hp_s)))/N;
X_hp_s_angle = fftshift(angle(fft(filter_hp_s)));
figure(4);
freqz(b,a); %滤波器频谱特性
figure(5);
subplot(3,1,1);
plot(t,filter_hp_s);
grid on;
title('高通滤波后时域图形');
subplot(3,1,2);
plot(f,X_hp_s);
title('高通滤波后频域幅度特性');
subplot(3,1,3);
plot(f,X_hp_s_angle);
title('高通滤波后频域相位特性');

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LPt70b8v-1573631016257)(G:\研究生\项目小组任务\笔记\第四周笔记\hightp.bmp)]

带通滤波器设计:

%设计一个带通滤波器,要求把50Hz和400Hz的频率分量滤掉,其他分量保留
wp = [65 385 ] / (fs/2);  %通带截止频率,50~100、200~400中间各取一个值,并对其归一化
ws = [75 375 ] / (fs/2);  %阻带截止频率,50~100、200~400中间各取一个值,并对其归一化
alpha_p = 3; %通带允许最大衰减为  db
alpha_s = 20;%阻带允许最小衰减为  db
%获取阶数和截止频率
[ N3 wn ] = cheb1ord( wp , ws , alpha_p , alpha_s);
%获得转移函数系数
[ b a ] = cheby1(N3,alpha_p,wn,'bandpass');
%滤波
filter_bp_s = filter(b,a,x);
X_bp_s = fftshift(abs(fft(filter_bp_s)))/N;
X_bp_s_angle = fftshift(angle(fft(filter_bp_s)));
figure(6);
freqz(b,a); %滤波器频谱特性
figure(7);
subplot(3,1,1);
plot(t,filter_bp_s);
grid on;
title('带通滤波后时域图形');
subplot(3,1,2);
plot(f,X_bp_s);
title('带通滤波后频域幅度特性');
subplot(3,1,3);
plot(f,X_bp_s_angle);
title('带通滤波后频域相位特性');

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3XBKXRhq-1573631016258)(G:\研究生\项目小组任务\笔记\第四周笔记\bandp.bmp)]

带阻滤波器设计:

%设计一个带阻滤波器,要求把50Hz和400Hz的频率分量保留,其他分量滤掉
wp = [65 385 ] / (fs/2);  %通带截止频率?,50~100、200~400中间各取一个值,并对其归一化
ws = [75 375 ] / (fs/2);  %阻带截止频率?,50~100、200~400中间各取一个值,并对其归一化
alpha_p = 3; %通带允许最大衰减为  db
alpha_s = 20;%阻带允许最小衰减为  db
%获取阶数和截止频率
[ N4 wn ] = cheb1ord( wp , ws , alpha_p , alpha_s);
%获得转移函数系数
[ b a ] = cheby1(N4,alpha_p,wn,'stop');
%滤波
filter_bs_s = filter(b,a,x);
X_bs_s = fftshift(abs(fft(filter_bs_s)))/N;
X_bs_s_angle = fftshift(angle(fft(filter_bs_s)));
figure(8);
freqz(b,a); %滤波器频谱特性
figure(9);
subplot(3,1,1);
plot(t,filter_bs_s);
grid on;
title('带阻滤波后时域图形');
subplot(3,1,2);
plot(f,X_bs_s);
title('带阻滤波后频域幅度特性');
subplot(3,1,3);
plot(f,X_bs_s_angle);
title('带阻滤波后频域相位特性');

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ccbiuMxk-1573631016258)(G:\研究生\项目小组任务\笔记\第四周笔记\bands.bmp)]

相关推荐
雪夫滤波器设计 前言 人类正在进入信息时代,信号处理滤波器设计是信息科学技术领域中一个不可或缺的重要内容。然而半个世纪以来,滤波器设计的基本理论一直没有改变,现有的技术都只支持一种滤波器实现方法,像无源LRC滤波器、有源RC滤波器、数字滤波器、开关电容滤波器,从指标要求到实际设计的第一步,都是基于O.J.Zoble,R.M.Foster等许多前人的基础工作。由此而产生的设计理论导致了滤波器设计的初始设计的方程化;把给定的指标转化为S域或z域的传递函数,或转化为 LC滤波器结构。进行到这一步时,设计者可以选择滤波器,如雪夫滤波器,巴特沃思滤波器,椭圆滤波器或其他类。选择什么类有以下因素决定:滤波器阶数决定、群延迟、内波纹、边选择性,易于调试性及其它一些相关要求。 ...... 1] (日) 森 荣二著.LC滤波器设计与制作[M].北京:科学出版社,2006.1 [2]黄智伟. 全国大学生电子设计竞赛训练教程[M]北京:电子工业出版社出版,2005.1.90-91 [3] Miroslav D.Lutovac. 信号处理——滤波器设计[M]北京:电子工业出版社,2005.1.58 [4] 孙力维.电子滤波器设计[M]北京:科学出版社.2008.10 .26 [5]周利清.信号处理与引论.北京:电子工业出版社2005.4.100-240 [6]蔡明生.电子设计.北京:高等教育出版社.2004.1.255-258
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页