中国古代科技竞就有多高?-哪些你不知道的问数学的10大伟大发明

众所周知,造纸术、印刷术、指南针和火药并列为中国的 “四大发明”,它已经成为中华文明的一种标志。但也毋庸置疑,我国古代的重要发明创造远不止于此。

古代中国人还有哪些重要的科技发明创造呢?中国科学院自然科学史研究所编写的《中国古代重要科技发明创造》一书详细地回答了这一问题。书中分门别类共计88项发明创造成果,展示了我国古代丰富、先进的科技水平。

 

图一 四大发明

其中,有十项属于数学方面的发明创造,依照时间顺序,它们分别是十进位值制与算筹记数法,盈不足术,勾股容圆,线性方程组及解法,中国珠算,增乘开方法,垛积术,天元术,一次同余方程组解法和四元术。

 

图二 古代数学

1.十进位值制与算筹记数法

我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。

 

图三 算筹

 

图四 计算

2.《九章算术》与盈不足术

《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(前1世纪),一直流传至今,是中国现有传本中最古老的数学著作。全书采用问题集的形式编写,共收有246个数学问题,分做9大类,就是“九章”。其内容涉及算术、初等代数、初等几何等各个方面。其中,最著名的便是分数运算法则和双假设法(盈不足术)等。

 

图五 九章算术

 

图六 盈不足术

3.《周髀算经》与勾股定理

西汉末年(约前2世纪)编纂的《周髀算经》,是我国最古老的一部古典数学著作。这部著作记录了我国古代早期的一些数学成果,其中提出勾股定理的特例,在赵爽的注释中给出了普遍形式和证明。

 

图七 勾股圆方图说

4.线性方程组及解法

我国是世界上最早提出联立方程式的国家。《九章算术》中关于多元一次方程组解法的记载比印度早400多年,比欧洲早1300多年;关于开平方、开立方以及一般二次方程的解法等在世界上也都是最早的。

 

图八 方程术

5. 中国珠算

算盘是我国古代的一项伟大发明。我国的算盘是由古代的“算筹”演变而来的。16世纪明代中叶珠算术取代算筹术在全国得到普遍推广,论述算术的著作也随之产生,流行最广的珠算是1593年明代 程大位所辑的《算法统宗》。由于珠算术用算盘演算,比筹算术用算筹演算简单方便,珠算口诀又便于记忆,因而在我国被普遍应用,同时也陆续传到了日本、朝鲜、印度、美国、东南亚等国家和地区,受到广泛欢迎。近来,美国和日本一些专家把我国的算盘尊称为新文化,并和指南针、造纸术、印刷术、火药并列,被誉为我国的第五大发明。

 

图九 算盘

6. 贾宪三角与增乘开方法

现代初等数学中,二项式乘方展开是一种最基本的运算方法。二项式展开项系数,具有一定规律性,它是以组合数公式表示的,因此,在做二项式乘方展开时,只要记住这个规律,就可把各项直接求出来。我国是二项式乘方展开项系数规律性的最先发现国,这在世界数学历史上是一个重大的贡献。早在11世纪,我国北宋时期的数学家贾宪,在他注解的《九章算术》中总结了先秦到东汉初的数学成就,并对乘方展开方法进行了专门的研究和探讨,提出的“开方作法本源图”, 被称为“贾宪三角”,比欧洲人所称的“巴斯卡三角”早600多年。

 

图十 贾宪三角

 

图十一 增乘开方法

7.《梦溪笔谈》与垛积术

垛积术解决的是等差数列求和问题。

 

图十二 垛积术

8. 《测圆海镜》与天元术

天元就是未知数,天元术是列方程和解方程之法。

 

图十三 天元术

9.《数书九章》与大衍求一术

宋朝数学家秦九韶的求解一次同余式的“大衍求一术”,是数学史上的一项卓越成就。联立一次同余式问题最早见于《孙子算经》中的一个问题:“今有数不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这就是着名的孙子问题。他的解法要用到求三个一次同余式的共同解。秦九韶在《数书九章》中首次对这一算法进行介绍,并把它推广到解决各种数学问题中去。他系统地提出求解一次同余组的一般计算步骤,正确而又严密。500年后,欧拉(17071789年)和高斯(17771855年)等人对联立一次同余式问题才进行了深人的研究。

 

图十四 秦九韶

10.《四元玉鉴》与四元术

1303年,元朝数学家朱世杰的《四元玉鉴》把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,这是世界上第一个提出多元高次方程解法的人。400多年后的1775年,法国人才提出同样的解法。

 

图十五 四元术

 

图十六 解法

中国古代科学技术是祖先留给我们的一份丰厚的科学遗产,它蕴藏在汗牛充栋的典籍之中,凝聚于物化了的、丰富多姿的文物之中,需要下一番发掘、整理、研究的功夫,才能揭示它的博大精深的真实面貌。中国人在研究自然并用于造福人类方面,很早而且在相当长的时间内雄居于世界之首,这是我们自豪的巨大源泉。

众所周知,造纸术、印刷术、指南针和火药并列为中国的 “四大发明”,它已经成为中华文明的一种标志。但也毋庸置疑,我国古代的重要发明创造远不止于此。古代中国人还有哪些重要的科技发明创造呢?中国科学院自然科学史研究所编写的《中国古代重要科技发明创造》一书详细地回答了这一问题。书中分门别类共计88项发明创造成果,展示了我国古代丰富、先进的科技水平。

 

图一 四大发明

其中,有十项属于数学方面的发明创造,依照时间顺序,它们分别是十进位值制与算筹记数法,盈不足术,勾股容圆,线性方程组及解法,中国珠算,增乘开方法,垛积术,天元术,一次同余方程组解法和四元术。

 

图二 古代数学

1.十进位值制与算筹记数法

我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。

 

图三 算筹

 

图四 计算

2.《九章算术》与盈不足术

《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(前1世纪),一直流传至今,是中国现有传本中最古老的数学著作。全书采用问题集的形式编写,共收有246个数学问题,分做9大类,就是“九章”。其内容涉及算术、初等代数、初等几何等各个方面。其中,最著名的便是分数运算法则和双假设法(盈不足术)等。

 

图五 九章算术

 

图六 盈不足术

3.《周髀算经》与勾股定理

西汉末年(约前2世纪)编纂的《周髀算经》,是我国最古老的一部古典数学著作。这部著作记录了我国古代早期的一些数学成果,其中提出勾股定理的特例,在赵爽的注释中给出了普遍形式和证明。

 

图七 勾股圆方图说

4.线性方程组及解法

我国是世界上最早提出联立方程式的国家。《九章算术》中关于多元一次方程组解法的记载比印度早400多年,比欧洲早1300多年;关于开平方、开立方以及一般二次方程的解法等在世界上也都是最早的。

 

图八 方程术

5. 中国珠算

算盘是我国古代的一项伟大发明。我国的算盘是由古代的“算筹”演变而来的。16世纪明代中叶珠算术取代算筹术在全国得到普遍推广,论述算术的著作也随之产生,流行最广的珠算是1593年明代 程大位所辑的《算法统宗》。由于珠算术用算盘演算,比筹算术用算筹演算简单方便,珠算口诀又便于记忆,因而在我国被普遍应用,同时也陆续传到了日本、朝鲜、印度、美国、东南亚等国家和地区,受到广泛欢迎。近来,美国和日本一些专家把我国的算盘尊称为新文化,并和指南针、造纸术、印刷术、火药并列,被誉为我国的第五大发明。

 

图九 算盘

6. 贾宪三角与增乘开方法

现代初等数学中,二项式乘方展开是一种最基本的运算方法。二项式展开项系数,具有一定规律性,它是以组合数公式表示的,因此,在做二项式乘方展开时,只要记住这个规律,就可把各项直接求出来。我国是二项式乘方展开项系数规律性的最先发现国,这在世界数学历史上是一个重大的贡献。早在11世纪,我国北宋时期的数学家贾宪,在他注解的《九章算术》中总结了先秦到东汉初的数学成就,并对乘方展开方法进行了专门的研究和探讨,提出的“开方作法本源图”, 被称为“贾宪三角”,比欧洲人所称的“巴斯卡三角”早600多年。

 

图十 贾宪三角

 

图十一 增乘开方法

7.《梦溪笔谈》与垛积术

垛积术解决的是等差数列求和问题。

 

图十二 垛积术

8. 《测圆海镜》与天元术

天元就是未知数,天元术是列方程和解方程之法。

 

图十三 天元术

9.《数书九章》与大衍求一术

宋朝数学家秦九韶的求解一次同余式的“大衍求一术”,是数学史上的一项卓越成就。联立一次同余式问题最早见于《孙子算经》中的一个问题:“今有数不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这就是着名的孙子问题。他的解法要用到求三个一次同余式的共同解。秦九韶在《数书九章》中首次对这一算法进行介绍,并把它推广到解决各种数学问题中去。他系统地提出求解一次同余组的一般计算步骤,正确而又严密。500年后,欧拉(17071789年)和高斯(17771855年)等人对联立一次同余式问题才进行了深人的研究。

 

图十四 秦九韶

10.《四元玉鉴》与四元术

1303年,元朝数学家朱世杰的《四元玉鉴》把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,这是世界上第一个提出多元高次方程解法的人。400多年后的1775年,法国人才提出同样的解法。

 

图十五 四元术

 

图十六 解法

中国古代科学技术是祖先留给我们的一份丰厚的科学遗产,它蕴藏在汗牛充栋的典籍之中,凝聚于物化了的、丰富多姿的文物之中,需要下一番发掘、整理、研究的功夫,才能揭示它的博大精深的真实面貌。中国人在研究自然并用于造福人类方面,很早而且在相当长的时间内雄居于世界之首,这是我们自豪的巨大源泉。

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值