本地大模型比较

大模型中量级单位和内存不一样

K(Kilo, 千):表示 1,000。在机器学习模型中,通常用来描述较小模型的参数量,比如 100K(十万)参数。

M(Million, 百万):表示 1,000,000。一般用于中等规模的模型,比如 BERT-base(110M)。

B(Billion, 十亿):表示 1,000,000,000。大型模型通常达到这一量级,比如 GPT-3(175B)。

T(Trillion, 万亿):表示 1,000,000,000,000。这代表非常巨大的参数量。GPT-4


Ollama 的竞品对比

工具/框架

本地运行

开源

模型选择

易用性

适用场景

Ollama

中等

隐私敏感、离线、轻量级

Hugging Face

丰富

中高

研究、开发、生产

LLaMA

较少

研究、轻量级应用

GPT-NeoX

较少

研究、实验

LocalAI

丰富

中高

隐私敏感、离线


最轻量级模型对比

模型名称

参数规模

原始内存需求

4-bit 量化后内存需求

适用场景

TinyLLaMA

1B

2GB

500MB-1GB

嵌入式应用、轻量级对话

RWKV

1.5B

3GB

1GB-2GB

文本生成、对话系统

DistilGPT-2

82M

2GB

无需量化

文本生成、问答系统

GPT-Neo

125M

500MB

无需量化

嵌入式应用、实验性项目

ChatGLM-6B

6B

12GB

3GB-6GB

中英双语对话

LLaMA 7B

7B

16GB

4GB-8GB

文本生成、问答系统

Alpaca 7B

7B

16GB

4GB-8GB

对话系统、任务自动化

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值