大模型中量级单位和内存不一样
K(Kilo, 千):表示 1,000。在机器学习模型中,通常用来描述较小模型的参数量,比如 100K(十万)参数。
M(Million, 百万):表示 1,000,000。一般用于中等规模的模型,比如 BERT-base(110M)。
B(Billion, 十亿):表示 1,000,000,000。大型模型通常达到这一量级,比如 GPT-3(175B)。
T(Trillion, 万亿):表示 1,000,000,000,000。这代表非常巨大的参数量。GPT-4
Ollama 的竞品对比
工具/框架 | 本地运行 | 开源 | 模型选择 | 易用性 | 适用场景 |
Ollama | ✅ | ✅ | 中等 | 高 | 隐私敏感、离线、轻量级 |
Hugging Face | ✅ | ✅ | 丰富 | 中高 | 研究、开发、生产 |
LLaMA | ✅ | ✅ | 较少 | 中 | 研究、轻量级应用 |
GPT-NeoX | ✅ | ✅ | 较少 | 中 | 研究、实验 |
LocalAI | ✅ | ✅ | 丰富 | 中高 | 隐私敏感、离线 |
最轻量级模型对比
模型名称 | 参数规模 | 原始内存需求 | 4-bit 量化后内存需求 | 适用场景 |
TinyLLaMA | 1B | 2GB | 500MB-1GB | 嵌入式应用、轻量级对话 |
RWKV | 1.5B | 3GB | 1GB-2GB | 文本生成、对话系统 |
DistilGPT-2 | 82M | 2GB | 无需量化 | 文本生成、问答系统 |
GPT-Neo | 125M | 500MB | 无需量化 | 嵌入式应用、实验性项目 |
ChatGLM-6B | 6B | 12GB | 3GB-6GB | 中英双语对话 |
LLaMA 7B | 7B | 16GB | 4GB-8GB | 文本生成、问答系统 |
Alpaca 7B | 7B | 16GB | 4GB-8GB | 对话系统、任务自动化 |