解决显存占用/泄露,显示异常 #ps x |grep python|awk ‘{print $1}’|xargs kill 杀死所有僵尸进程#root用户fuser -v /dev/nvidia* |awk ‘{for(i=1;i
VSCode 跳板机远程连接 ssh config的位置在:~/.ssh/configvscode 登录打开vscode,点击View - Command palette点击Remote SSH: Connect to Host选择上一步配置的远程服务器别名按照提示分别输入跳板机,远程服务器的密码第一次连接的时候会花几分钟时间安装vscode server,注意: 即使远程服务器没有网络也可以安装成功Host xxx # 随便起 HostName 123.123.123.123 # 训练服务器IP User u
完美解决python-opencv读取超大像素图像报错,(-215:Assertion failed) pixels <= CV_IO_MAX_IMAGE_PIXELS) 主要原因:opencv有个像素的限制在 import cv2 前加上一句规则语句即可import osos.environ["OPENCV_IO_MAX_IMAGE_PIXELS"] = pow(2,40).__str__()import cv2完美解决!!!
Pytorch使用albumentations实现数据增强 记录一下,非常全!!!https://blog.csdn.net/zhangyuexiang123/article/details/107705311
解决Linux访问Github速度慢的问题 系统:Ubuntu18.0TLSStep1:sudo gedit /etc/hostsStep2:添加到最后140.82.113.3 github.com185.199.108.154 github.githubassets.com185.199.109.154 github.githubassets.com185.199.110.154 github.githubassets.com185.199.111.154 github.githubassets.com185.199.108.1
mmdetection学习率转换 X:我的一个batchsize输入图像数量Y:mmdetction一个batchsize输入图像数量Z:默认学习率新的学习率= X/YZ如:X:1GPU+2img/GPU=2张MMdet默认是8GPU2img/GPU=16张MMdet默认学习率=0.02新的学习率=0.0025
从L1 loss到EIoU loss,目标检测边框回归的损失函数一览 目标检测任务的损失函数由Classificition Loss和BBox Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程。其演进路线是 Smooth L1 Loss 图片 IoU Loss 图片 GIoU Loss 图片 DIoU Loss 图片 CIoU Loss 图片 EIoU Loss,本文按照此路线进行讲解。详细讲解请看 :https://mp.weixin.qq.com/s/jMWT
FPN(Feature Pyramid Networks for Object Detection),混叠效应解读 解释的非常好,分享给大家论文讲解 :https://blog.csdn.net/qq_33948796/article/details/89513416原理 :https://blog.csdn.net/kk123k/article/details/86566954混叠效应:在统计、信号处理和相关领域中,混叠是指取样信号被还原成连续信号时产生彼此交叠而失真的现象。当混叠发生时,原始信号无法从取样信号还原。而混叠可能发生在时域上,称做时间混叠,或是发生在频域上,被称作空间混叠。在视觉影像的模拟数字转换
语义分割Trick集合 语义分割常用trick技巧外部数据• 使用 LUng Node Analysis Grand Challenge 数据,因为这个数据集包含了来自放射学的标注细节。• 使用 LIDC-IDRI 数据,因为它具有找到了肿瘤的所有放射学的描述。• 使用Flickr CC,维基百科通用数据集• 使用Human Protein Atlas Dataset• 使用IDRiD数据集数据探索和直觉• 使用0.5的阈值对3D分割进行聚类• 确认在训练集和测试集的标签分布上有没有不一样的地方预处理• 使用
.RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 ‘mat2‘ .RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 ‘mat2’if i%1000 == 0: display.clear_output(wait=True) x = t.arange(0,20).view(-1, 1) print(x.dtype)# print(x) y = x.
卷积图画图软件分享 写在前面:立体图推荐PlotNeuaralNet; 平面图推荐NetScope.NN-SVGgithub地址:https://github.com/zfrenchee画图工具体验地址:http://alexlenail.me/NN-SVG/可以绘制的图包括以节点形式展示的FCNN style,这个特别适合传统的全连接神经网络的绘制。PlotNeuralNet画立体卷积图必备https://github.com/HarisIqbal88/PlotNeuralNetConvNetDrawCon
Re-id的trick技巧 1.主要采用训练时水平翻转,测试时也同样水平翻转抽取两次特征并求平均。该思路在人脸识别问题中就被大量采用。2.输入图像扩大,来自[3]中,将256128的输入变为384128,性能会提升不少,也有人尝试288144[4]3.随机裁剪,很多人尝试过后会发现性能反而不好,这里有个技巧,就是先补0,然后再裁剪,把图片resize到384128,然后补0至402148,再次随机裁剪为384128。具体做法来自于[5],该文章中是把图片resize到256128,并补0至276148,然后随机裁减至256*128
2020 ECCV VIPriors workshop 目标检测思路 2020 ECCV VIPriors workshop 目标检测第一名思路1. Offline Data Augmentation2. Online Data AugmentationMethods代码地址
zip分卷压缩和解压 分卷压缩的话,需要先将文件打包成一个zip包,然后执行zip -s SIZE origin.zip --out new.zipSIZE为分卷的大小4m,4g,4t等解压的时候需要先将它合并才能正常解压zip new.zip -s=0 --out single.zip
2020中兴捧月算法大赛阿尔法赛道决赛总结(多目标检测与跟踪) 赛题:多目标检测与跟踪初赛:排名第1,复赛面试完第8。初赛思路:第一次做跟踪任务。简单的认为是检测+reid问题。初赛:1.首先明确题意:多目标跟踪;指标MOTA和MOTP, 后期的大量实验证明检测算法相对于跟踪更重要。2.数据集分析:人群密集稀疏场景;场景(白天,黑夜)光照变化丰富。多方向视角,方向变化大;行人速度有快又慢。B榜 新增2个挑战: 更密集的人群和遮挡初赛不看速度要求,选择SOTA检测算法,Cascade-RCNN ,其中选择HRNet作为backbone。Reid