Leetcode 1223:掷骰子模拟(超详细的解法!!!)

这篇博客详细解析了LeetCode 1223题,即如何在一个有限制的骰子模拟器中计算不同点数序列的数量。文章介绍了递归与动态规划的解题方法,包括如何处理连续数字限制,以及如何优化算法以提高效率。博主还分享了代码实现,并提到仍有待探索的数学解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。

不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[i]i 从 1 开始编号)。

现在,给你一个整数数组 rollMax 和一个整数 n,请你来计算掷 n 次骰子可得到的不同点数序列的数量。

假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7 之后的结果。

示例 1:

输入:n = 2, rollMax = [1,1,2,2,2,3]
输出:34
解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。

示例 2:

输入:n = 2, rollMax = [1,1,1,1,1,1]
输出:30

示例 3:

输入:n = 3, rollMax = [1,1,1,2,2,3]
输出:181

提示:

  • 1 <= n <= 5000
  • rollMax.length == 6
  • 1 <= rollMax[i] <= 15

解题思路

这题使用dfscache可以过。具体思路如下:

考虑每个位置需要摆放的数i(其中0<=i<6),判断i和之前元素pre是不是一样,如果一样并且i的连续个数等于rollMax[i],此时i就不能放入当前位置,那么可以将i+1放入当前位置,依次递归下去将所有的数放好即可。接着思考边界条件,也非常简单,就是当当我们遍历完全部的n个数就(表示当前位置上的数都放好了)此时返回1(表示这是一个可行解)。

from functools import lru_cache
class Solution:
    def dieSimulator(self, n: int, rollMax: List[int]) -> int:
        @lru_cache(None)
        def dfs(n, pre, k):
            if n == 0:
                return 1
            res = 0
            for i in range(6):
                if i == pre and k == rollMax[i]:
                    continue
                res = (res + dfs(n - 1, i, k + 1 if i == pre else 1))%(10**9 + 7)
            return res
        return dfs(n, -1, 0)

由于使用了lru_cache所以代码非常简洁。当然可以使用dfs加记忆化的问题也可以使用动态规划来做。定义函数 f ( i , j , k ) f(i, j, k) f(i,j,k)表示第 i i i掷次骰子,并且数字 j j j在之前出现了 k k k次的总次数。那么

  • f ( i , j , 0 ) = ∑ t = 0 6 f ( i − 1 , t , k )    i f   t ≠ j f(i,j,0)=\sum_{t=0}^{6} f(i-1,t,k) \ \ if \ t\neq j f(i,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值