有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。
不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i
的次数不能超过 rollMax[i]
(i
从 1 开始编号)。
现在,给你一个整数数组 rollMax
和一个整数 n
,请你来计算掷 n
次骰子可得到的不同点数序列的数量。
假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7 之后的结果。
示例 1:
输入:n = 2, rollMax = [1,1,2,2,2,3]
输出:34
解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。
示例 2:
输入:n = 2, rollMax = [1,1,1,1,1,1]
输出:30
示例 3:
输入:n = 3, rollMax = [1,1,1,2,2,3]
输出:181
提示:
1 <= n <= 5000
rollMax.length == 6
1 <= rollMax[i] <= 15
解题思路
这题使用dfs
加cache
可以过。具体思路如下:
考虑每个位置需要摆放的数i
(其中0<=i<6
),判断i
和之前元素pre
是不是一样,如果一样并且i
的连续个数等于rollMax[i]
,此时i
就不能放入当前位置,那么可以将i+1
放入当前位置,依次递归下去将所有的数放好即可。接着思考边界条件,也非常简单,就是当当我们遍历完全部的n
个数就(表示当前位置上的数都放好了)此时返回1
(表示这是一个可行解)。
from functools import lru_cache
class Solution:
def dieSimulator(self, n: int, rollMax: List[int]) -> int:
@lru_cache(None)
def dfs(n, pre, k):
if n == 0:
return 1
res = 0
for i in range(6):
if i == pre and k == rollMax[i]:
continue
res = (res + dfs(n - 1, i, k + 1 if i == pre else 1))%(10**9 + 7)
return res
return dfs(n, -1, 0)
由于使用了lru_cache
所以代码非常简洁。当然可以使用dfs
加记忆化的问题也可以使用动态规划来做。定义函数 f ( i , j , k ) f(i, j, k) f(i,j,k)表示第 i i i掷次骰子,并且数字 j j j在之前出现了 k k k次的总次数。那么
- f ( i , j , 0 ) = ∑ t = 0 6 f ( i − 1 , t , k ) i f t ≠ j f(i,j,0)=\sum_{t=0}^{6} f(i-1,t,k) \ \ if \ t\neq j f(i,