【树】100. 相同的树 & 101. 对称二叉树 & 226. 翻转二叉树

100. 相同的树

题目

100. 相同的树

给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

示例 1:
在这里插入图片描述
输入:p = [1,2,3], q = [1,2,3]
输出:true

示例 2:
在这里插入图片描述
输入:p = [1,2], q = [1,null,2]
输出:false

解法

深度优先搜索

如果两个二叉树都为空,则两个二叉树相同。如果两个二叉树中有且只有一个为空,则两个二叉树一定不相同。

如果两个二叉树都不为空,那么首先判断它们的根节点的值是否相同,若不相同则两个二叉树一定不同,若相同,再分别判断两个二叉树的左子树是否相同以及右子树是否相同。这是一个递归的过程,因此可以使用深度优先搜索,递归地判断两个二叉树是否相同。

public boolean isSameTree(TreeNode p, TreeNode q) {
		// 两个都为空,则相同
        if (p == null && q == null) {
            return true;
        }
        // 只有一个为空,不相同
        if (p == null || q == null) {
            return false;
        }
        // 只有当值相同并且左右子树都相同时才相同
        return p.val == q.val && isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
    }

广度优先搜索

也可以通过广度优先搜索判断两个二叉树是否相同。同样首先判断两个二叉树是否为空,如果两个二叉树都不为空,则从两个二叉树的根节点开始广度优先搜索。

使用两个队列分别存储两个二叉树的节点。初始时将两个二叉树的根节点分别加入两个队列。每次从两个队列各取出一个节点,进行如下比较操作。

  1. 比较两个节点的值,如果两个节点的值不相同则两个二叉树一定不同;
  2. 如果两个节点的值相同,则判断两个节点的子节点是否为空,如果只有一个节点的左子节点为空,或者只有一个节点的右子节点为空,则两个二叉树的结构不同,因此两个二叉树一定不同;
  3. 如果两个节点的子节点的结构相同,则将两个节点的非空子节点分别加入两个队列,子节点加入队列时需要注意顺序,如果左右子节点都不为空,则先加入左子节点,后加入右子节点。

如果搜索结束时两个队列同时为空,则两个二叉树相同。如果只有一个队列为空,则两个二叉树的结构不同,因此两个二叉树不同。

public boolean isSameTree(TreeNode p, TreeNode q) {
        if (p == null && q == null) {
            return true;
        }
        if (p == null || q == null) {
            return false;
        }
        Queue<TreeNode> queue1 = new LinkedList<TreeNode>();
        Queue<TreeNode> queue2 = new LinkedList<TreeNode>();
        queue1.add(p);
        queue2.add(q);
        while (!queue1.isEmpty() && !queue2.isEmpty()) {
            TreeNode node1 = queue1.remove();
            TreeNode node2 = queue2.remove();
            if (node1.val != node2.val) {
                return false;
            }
            TreeNode left1 = node1.left, right1 = node1.right, left2 = node2.left, right2 = node2.right;
            if (left1 == null ^ left2 == null) {
                return false;
            }
            if (right1 == null ^ right2 == null) {
                return false;
            }
            if (left1 != null) {
                queue1.add(left1);
            }
            if (right1 != null) {
                queue1.add(right1);
            }
            if (left2 != null) {
                queue2.add(left2);
            }
            if (right2 != null) {
                queue2.add(right2);
            }
        }
        return queue1.isEmpty() && queue2.isEmpty();
    }

101. 对称二叉树

题目

101. 对称二叉树

给定一个二叉树,检查它是否是镜像对称的。

例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/
2 2
/ \ /
3 4 4 3

但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/
2 2
\
3 3

解法

方法一:深度优先搜索

如果一个树的左子树与右子树镜像对称,那么这个树是对称的。

因此,该问题可以转化为:两个树在什么情况下互为镜像?

如果同时满足下面的条件,两个树互为镜像:

  • 它们的两个根结点具有相同的值
  • 每个树的右子树都与另一个树的左子树镜像对称
    在这里插入图片描述
    我们可以实现这样一个递归函数,通过「同步移动」两个指针的方法来遍历这棵树,p 指针和 q 指针一开始都指向这棵树的根,随后p右移时,q左移,p左移时,q右移。每次检查当前 p和q节点的值是否相等,如果相等再判断左右子树是否对称。
class Solution {
    public boolean isSymmetric(TreeNode root) {
        return check(root, root);
    }
    
    public boolean check(TreeNode p, TreeNode q) {
        if (p == null && q == null) {
            return true;
        }
        if (p == null || q == null) {
            return false;
        }
        return p.val == q.val && check(p.left, q.right) && check(p.right, q.left);
    }
}

广度优先搜索

「方法一」中我们用递归的方法实现了对称性的判断,那么如何用迭代的方法实现呢?

首先我们引入一个队列,这是把递归程序改写成迭代程序的常用方法。初始化时我们把根节点入队两次。每次提取两个结点并比较它们的值(队列中每两个连续的结点应该是相等的,而且它们的子树互为镜像),然后将两个结点的左右子结点按相反的顺序插入队列中。当队列为空时,或者我们检测到树不对称(即从队列中取出两个不相等的连续结点)时,该算法结束。

 public boolean isSymmetric(TreeNode root) {
        return check(root, root);
    }

    public boolean check(TreeNode u, TreeNode v) {
        Queue<TreeNode> q = new LinkedList<TreeNode>();
        q.add(u);
        q.add(v);
        while (!q.isEmpty()) {
            u = q.remove();
            v = q.remove();
            if (u == null && v == null) {
                continue;
            }
            if ((u == null || v == null) || (u.val != v.val)) {
                return false;
            }

            q.add(u.left);
            q.add(v.right);

            q.add(u.right);
            q.add(v.left);
        }
        return true;
    }

226. 翻转二叉树

题目

226. 翻转二叉树

翻转一棵二叉树。

示例:

输入:

 4

/
2 7
/ \ /
1 3 6 9

输出:

 4

/
7 2
/ \ /
9 6 3 1

解法

深度优先搜索

这是一道很经典的二叉树问题。显然,我们从根节点开始,递归地对树进行遍历,并从叶子结点先开始翻转。如果当前遍历到的节点 root 的左右两棵子树都已经翻转,那么我们只需要交换两棵子树的位置,即可完成以root 为根节点的整棵子树的翻转。

public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return root;
        }
        TreeNode left = invertTree(root.left);
        TreeNode right = invertTree(root.right);
        root.left = right;
        root.right = left;
        return root;
    }

广度优先搜索

递归实现也就是深度优先遍历的方式,那么对应的就是广度优先遍历。
广度优先遍历需要额外的数据结构–队列,来存放临时遍历到的元素。
深度优先遍历的特点是一竿子插到底,不行了再退回来继续;而广度优先遍历的特点是层层扫荡。
所以,我们需要先将根节点放入到队列中,然后不断的迭代队列中的元素。
对当前元素调换其左右子树的位置,然后:

  • 判断其左子树是否为空,不为空就放入队列中
  • 判断其右子树是否为空,不为空就放入队列中
    在这里插入图片描述
 public TreeNode invertTree(TreeNode root) {
        if(root==null) {
            return null;
        }
        //将二叉树中的节点逐层放入队列中,再迭代处理队列中的元素
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while(!queue.isEmpty()) {
            //每次都从队列中拿一个节点,并交换这个节点的左右子树
            TreeNode tmp = queue.remove();
            TreeNode left = tmp.left;
            tmp.left = tmp.right;
            tmp.right = left;
            //如果当前节点的左子树不为空,则放入队列等待后续处理
            if(tmp.left!=null) {
                queue.add(tmp.left);
            }
            //如果当前节点的右子树不为空,则放入队列等待后续处理
            if(tmp.right!=null) {
                queue.add(tmp.right);
            }

        }
        //返回处理完的根节点
        return root;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值