APlayBoys
码龄10年
关注
提问 私信
  • 博客:67,795
    67,795
    总访问量
  • 16
    原创
  • 191,803
    排名
  • 193
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:AIGC领域CSDN新人,致力于干货分享!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2014-07-18
博客简介:

qq_17827079的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    93
    当月
    1
个人成就
  • 获得294次点赞
  • 内容获得26次评论
  • 获得349次收藏
创作历程
  • 11篇
    2024年
  • 1篇
    2018年
  • 3篇
    2017年
  • 1篇
    2016年
成就勋章
TA的专栏
  • LLM教程
    2篇
  • paper list
    1篇
  • AIGC应用
    5篇
  • 多模态
    1篇
  • 深度学习基础
    2篇
  • 历史
    1篇
  • 胡思乱想
    2篇
兴趣领域 设置
  • 人工智能
    计算机视觉人工智能神经网络自然语言处理pytorch语言模型transformernlp数据分析gpt-3stable diffusionDALL·E 2
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CVPR2024 | 3D视觉相关文章汇总

在这个博客中,我为大家精心整理了CVPR2024中五十多篇关于3D视觉领域的研究工作,并附上了各篇论文的链接以及部分工作的代码链接。如果您对3D视觉领域感兴趣或有相关需求,这里将是一个便捷的导航资源,助您快速了解和深入这一领域的最新进展。
原创
发布博客 2024.03.18 ·
2586 阅读 ·
30 点赞 ·
0 评论 ·
50 收藏

LLM之Alpaca:深入了解大模型Alpaca

去年的Alpaca 7B模型,不仅展示了在处理指令任务上的出色能力,还因其相对小的规模和低廉的复现成本而引起了大家的注意。在本篇博客中,汇总了官方报告和官方Git的内容,通过阅读可以了解Alpaca 7B模型的起源、训练过程、性能评估以及其潜在的应用和限制。让我们一起走进ALpaca,深入理解这一代表了AI领域最新发展的创新成果。
原创
发布博客 2024.03.18 ·
3044 阅读 ·
19 点赞 ·
1 评论 ·
27 收藏

一文搞懂多模态:BeiT-3之前的14个多模态+4个周边原理解读

在人工智能的世界里,多模态学习不断地展现出其重要性。这个领域的迅速发展不仅促进了不同类型数据之间的深度融合,还为机器理解世界提供了更加丰富和细腻的视角。随着科技的不断演进,人工智能模型已经开始渐渐具备处理和理解从文本、图像,到声音乃至视频等多种类型数据的能力。
原创
发布博客 2024.03.14 ·
1144 阅读 ·
18 点赞 ·
0 评论 ·
35 收藏

用Stable Diffusion生成同角色不同pose的人脸

随着技术的不断发展,我们现在可以使用稳定扩散技术(Stable Diffusion)来生成同一角色但不同姿势的人脸图片。本文将介绍这一方法的具体步骤,以及如何通过合理的提示语和模型选择来生成出更加真实和多样化的人脸图像。
原创
发布博客 2024.03.14 ·
2132 阅读 ·
16 点赞 ·
0 评论 ·
25 收藏

​LLM之新手入门:大预言模型的概念介绍与应用

最近,我在系统地学习大型语言模型(LLM)的相关知识。在这个学习过程中,我努力将所学的内容整理成博客文章。在这篇博客中,我首先简要介绍了人工智能的发展历史,然后探讨了大型模型的基本原理、训练方法、微调技巧、实际使用方式、模型压缩策略以及它们可能的应用场景。通过这篇文章,读者可以对大型语言模型的整体框架和功能有一个初步而全面的认识。
原创
发布博客 2024.03.14 ·
2881 阅读 ·
29 点赞 ·
0 评论 ·
25 收藏

深度学习图像训练指南:数据质量、数量与增强技巧

本博客专为深度学习新手提供关于图像训练数据的全面指南,着重探讨数据质量与数量在深度学习模型训练中的关键作用。文章深入分析数据质量的重要性,探讨不同深度学习模型对高质量数据的需求,并解释数据数量如何影响模型的性能和泛化能力。同时,本文还介绍了实际策略,包括数据增强技术和处理工业数据的局限性,以及学术界、竞赛和商业领域在数据处理上的不同。读者通过本博客将获得对于如何评估、准备和优化训练数据的深入见解,为其深度学习旅程打下坚实基础。
原创
发布博客 2024.03.14 ·
2045 阅读 ·
29 点赞 ·
0 评论 ·
26 收藏

一文搞懂深度模型训练中的硬件瓶颈分析

深度学习技术的迅速发展为我们带来了前所未有的机遇和挑战。许多从业者,无论是初学者还是有经验的开发者,都是在这一技术快速发展的某个阶段开始他们的学习之旅。然而,我在实践中发现,很多人在训练过程中并没有充分利用硬件资源,也常常对如何识别和解决硬件瓶颈感到困惑。为此,我撰写了这篇博客,旨在帮助更多的初学者和那些不清楚如何发现和解决硬件瓶颈的从业者。通过这篇文章,我希望能提供一些有效的方法和策略,使大家能以最小的成本和代价,有效地识别训练中的瓶颈,从而充分发挥硬件的潜力,优化模型训练过程。
原创
发布博客 2024.03.14 ·
1522 阅读 ·
34 点赞 ·
0 评论 ·
23 收藏

深入剖析Sora原理:细节解读与技术洞见

在人工智能的领域中,不断有新技术出现,推动着这个领域向前发展。在这些革新中,OpenAI最近推出的Sora模型无疑是其中最激动人心的。Sora不仅仅是一个AI模型,它是对人工智能能力的一次巨大飞跃,标志着我们进入了新的创造性AI应用时代。在Sora的技术报告中,OpenAI详细介绍了这一模型的开发背景、核心技术和未来的应用前景。这份报告不仅展示了Sora在技术上的创新,也为我们提供了对其深层次理解的机会。这篇博客的探索接近尾声,我们不禁感叹于Sora模型所展现出的技术深度和创新能力。
原创
发布博客 2024.03.05 ·
2478 阅读 ·
19 点赞 ·
0 评论 ·
28 收藏

揭秘OpenAI新巨作Sora:技术报告全解析+训练流程

统一视觉数据表示法与大规模生成模型训练:报告首先聚焦于如何将各类视觉数据转化为统一的表示形式,这是实现生成模型大规模训练的关键。通过这种统一表示,模型能够更有效地学习和生成多样化的视觉内容。Sora能力与局限性的定性评估:报告第二部分关注于定性评估Sora模型的能力和局限性。这意味着报告将展示Sora在实际应用中的表现,但不包括具体的模型和实现细节。
原创
发布博客 2024.03.05 ·
2077 阅读 ·
19 点赞 ·
0 评论 ·
24 收藏

一文搞懂Stable Diffusion中的提示词

欢迎来到Stable Diffusion的世界,这里是AI和创意的交汇点。在这里,我们将一起探索如何通过精心设计的提示词,指引这一强大的AI工具创造出令人叹为观止的图像。无论你是技术爱好者,还是对AI艺术充满好奇的初学者,这里都有你需要的秘籍。从基础语法到精细的权重调整,我们将带你深入了解如何高效利用提示词,激发Stable Diffusion的无限潜能。准备好了吗?让我们开始这趟探索之旅吧!
原创
发布博客 2024.03.05 ·
1975 阅读 ·
29 点赞 ·
0 评论 ·
18 收藏

怎么写大模型的提示词(prompts):任何人都需要掌握的查询技能

在这个AI技术飞速发展的新时代,提示词工程成为了连接人类与智能设备的关键桥梁。本文详细介绍了提示词工程的概念、重要性以及在提升人工智能模型交互中的核心作用。通过分析GPT的提示词生成方法、探索ICIO和CRISPE等主要框架,以及讨论OpenAI的官方策略,本文旨在为读者提供一个全面的了解和应用提示词工程的指南。同时,文章还指出了提示词工程的局限性,并提供了资源汇总,助力读者在新时代中不落后,更有效地利用AI技术。
原创
发布博客 2024.03.05 ·
9240 阅读 ·
27 点赞 ·
0 评论 ·
36 收藏

undefined symbol: _ZTIN10tensorflow8OpKernelE

使用tensorflow在编译完用c++自定义的layer,在调用的时候出现undefined symbol: _ZTIN10tensorflow8OpKernelE,是因为在用g++编译代码的时候没用使用tensorflow_framework.so动态库造成的,在gcc+ 的参数中添加-L /usr/local/lib/python3.5/dist-packages/tensorflow -l...
原创
发布博客 2018.03.27 ·
12498 阅读 ·
7 点赞 ·
22 评论 ·
9 收藏

PCA可以用到RBM中吗?

PCA的本质是把一组向量从一个空间映射到另一个空间,在不做降维的时候,这两个空间中的向量都可以包含全部信息。计算过程的特征值往往表示在映射到的空间中该特征值对应的维度包含的信量的多少,所以我们把近于零的特征值对应的特征向量,舍去。同时在这个映射空间也会失去这部分信息,也就是我们将一个不太重要的维度的信息失去了。 假设这时候剩下n维,剩下的这个n为空间可以是可以表示原来信息最多的n维空间吗?
原创
发布博客 2017.02.26 ·
495 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

caffe layertype总结

caffe layertype总结在caffe.proto文件中有40个layertype,我把他们总结如下vision 5层:Convolution,Deconvolution,Im2col,LRN,Pooling激活 9层:AbsVal,BNLL,Dropout,Power,ReLU,Sigmoid,TanH,Threshold,EXPcommon 10个:ArgMax,C
原创
发布博客 2017.02.23 ·
1530 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

我对未来新型数据库的一点想法

非常感谢您能阅读下我的分享,前年刚来北京的时候,互联网的关键词还是大数据,到去年alphago战胜李世石以后,转成了人工智能。人工智能的基础依然是数据,数据量和计算速度的飞速提成是人工智能发展的保障。我(一个业外人士)了解到市场上没有一个合适的数据库来适合这个场景的,为了迎合时代发展,数据库功能向这方面倾斜是必然趋势,也许已经了有很多产品,只是目前我没听过。这里我说说我对新型数据库的一点想法:
原创
发布博客 2017.02.21 ·
2434 阅读 ·
7 点赞 ·
2 评论 ·
10 收藏

greenplum之gpload常见问题集

1.编码问题2.每行的数据太长3.格式问题4.字段类型不匹配问题
原创
发布博客 2016.05.06 ·
5202 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏
加载更多