毛脸喵喵_X
码龄10年
关注
提问 私信
  • 博客:7,511
    7,511
    总访问量
  • 10
    原创
  • 924,020
    排名
  • 3
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2014-07-21
查看详细资料
个人成就
  • 获得4次点赞
  • 内容获得1次评论
  • 获得4次收藏
创作历程
  • 11篇
    2017年
成就勋章
TA的专栏
  • 神经网络
  • 深度学习
    4篇
  • 思维方式
    2篇
  • TensorFlow
    2篇
  • python
    1篇
  • 情感计算
    4篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    深度学习自动驾驶视觉检测
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

transfer learning+EEG(一)

问题所在——the applications of BCls are seriously hindered by the time consuming calibrations repeated before each use. EEG要进行校准(??) 原因1:脑电维度高又有噪声(边缘分布和条件分布在小样本情况下计算不出) 机器学习还是要看的! 原因2:受试者在实验过程中的脑电信号不稳定(
原创
发布博客 2017.11.20 ·
929 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

preference deep learning(三)

情感计算的三种输入类型—— a) behavioral responses to emotional stimuli expressed through an interactive application b) objective data collected as bodily responses to stimuli, such as physiological signals and
原创
发布博客 2017.07.30 ·
361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Implicit Analysis(二)

The perceptual experience of multimedia has diverse factors, including QoE, emotion, aesthetic satisfaction, preference,fatigue, attention 多媒体引起的知觉信息包括——用户体验,情感,美学满足,偏好,疲劳和注意力Physiological signals can
原创
发布博客 2017.07.28 ·
361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Affective computing(一)

(一)Bhattacharya S, Bhattacharya S, Chang S F. Predicting Viewer Perceived Emotions in Animated GIFs[C]// ACM International Conference on Multimedia. ACM, 2014:213-216.When a media sample is presented t
原创
发布博客 2017.07.23 ·
1977 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

python使用问题集合

panda获取工作路径: import os os.getcwd() 使用panda时把文件放在工作路径下面后使用pd.read_csv(”./_.csv”) 若想要直接不改变工作路径则可以用 df = pd.read_csv(U”文件存储的盘(如C):/文件夹/文件名.csv”)
原创
发布博客 2017.07.16 ·
227 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度卷积生成式对抗网络,Deep Convolutional Generative Adversarial Nerworks

无监督学习的方法:聚类、自编码、深度置信网络生成自然图像的各类方式: 1. 非参数~The non-parametric models often do matching from a database of existing images, often matching patches of images常用领域是纹理合成,超分辨率和图像修复。 2. 参数~A variational samp
原创
发布博客 2017.07.16 ·
1347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow学习(二)深入使用阅读笔记

每一层都创建于一个唯一的tf.name_scope之下,创建于该作用域之下的所有元素都将带有其前缀。with tf.name_scope('hidden1') as scopeweights = tf.Variable( tf.truncated_normal([IMAGE_PIXELS, hidden1_units], stdd
原创
发布博客 2017.04.04 ·
262 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

梳理深度学习论文(一)

Alexnet2013年 Hinton大牛提出 60 million parameters + 650000 neuron 五层卷积层(有些后面有池化层)+三层全连接层+1000路softmax层提出了ReLU比tanh要快的说法 ReLU可以不需要进行归一化,但Local Response Normalization依然有帮助 将模型top1和top5的错误率分别降低了1.4%和1.2%。
原创
发布博客 2017.04.04 ·
793 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

戒除浮躁(不知作者但是超级棒)

很多做research的朋友喜欢top-downapproach,包括我自己。就是说,在开始一个topic的时候,在第一时间就设定了大体的formulation,model又或者methodology。至于选择哪种设定,往往取决于研究者本身的偏好,知识背景,或者对问题的第一反应。接下来的事情就顺理成章了,推导数学模型和相关公式以及算法步骤,然后设计程序进行实验。当然少不了再拉上几个相关工作
转载
发布博客 2017.03.03 ·
309 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorFlow学习(一)入门

TensorFlow学习之入门
原创
发布博客 2017.03.02 ·
403 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《程序员思维训练》阅读笔记

绪论1.最重要的技能是:沟通能力和学习与思考能力 2.始终寻找属于自己的方法,切忌随波逐流。从新手到专家的历程1.从新手到专家,不止是获得了技术或者知道更多,而是在认识世界和解决问题以及如何形成思维模型等方面体验根本性区别。 2.新手使用规则,专家使用直觉。 -积极的实践需要四个条件 1.明确定义的任务 2.任务有挑战性,但要可行 3.任务环境可以提供大量反馈
原创
发布博客 2017.01.17 ·
473 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏