Encoder-Decoder架构模型,如下图:
Encoder会利用整个原始句子生成一个语义向量,Decoder再利用这个向量翻译成其它语言的句子。这样可以把握整个句子的意思、句法结构、性别信息等等。
Encoder对X 进行非线性变换得到中间语义向量c :

Decoder根据语义c 和生成的历史单词
来生成第
个单词
:
本文深入探讨了Encoder-Decoder架构在处理长序列任务时如何捕获上下文信息,详细介绍了注意力机制的不同类型,如普通注意力、多头注意力、硬性注意力、键值对注意力和结构化注意力,以及它们在处理序列到序列任务中的应用。同时,还提到了指针网络在定位相关信息中的作用。
Encoder-Decoder架构模型,如下图:
Encoder会利用整个原始句子生成一个语义向量,Decoder再利用这个向量翻译成其它语言的句子。这样可以把握整个句子的意思、句法结构、性别信息等等。
Encoder对X 进行非线性变换得到中间语义向量c :

Decoder根据语义c 和生成的历史单词
来生成第
个单词
:
422
9251
1072
2232
174

被折叠的 条评论
为什么被折叠?
>