spark scala-实现udf函数

本文章主要通过spark实现udf自定义函数

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType

/**
 * @author jhp
  *         spark实现udf功能
 */
object UDF {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local") 
        .setAppName("UDF")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
  
    // 构造模拟数据
    val names = Array("Leo", "Marry", "Jack", "Tom") 
    val namesRDD = sc.parallelize(names, 5) 
    val namesRowRDD = namesRDD.map { name => Row(name) }
    val structType = StructType(Array(StructField("name", StringType, true)))  
    val namesDF = sqlContext.createDataFrame(namesRowRDD, structType) 
    
    // 注册一张names    namesDF.registerTempTable("names")  
    
    // 定义和注册自定义函数
    // 定义函数:自己写匿名函数
    // 注册函数:SQLContext.udf.register()
    sqlContext.udf.register("strLen", (str: String) => str.length()) 
  
    // 使用自定义函数
    sqlContext.sql("select name,strLen(name) from names")
        .collect()
        .foreach(println)  
  }
  
}

阅读更多
文章标签: spark scala udf
个人分类: Spark知识汇合篇
上一篇spark scala-自定义hive函数
下一篇spark streaming - scala统计hdfs
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭