【码道初阶】二分再秒一道困难题:Leetcode154寻找旋转排序数组中的最小值 II ,不禁感叹证明一个思路错误,有时比找到正确的思路更加困难

问题回顾

已知一个长度为 n 的数组,预先按照升序排列,经由 1n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,4,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,4]
若旋转 7 次,则可以得到 [0,1,4,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]

给你一个可能存在 重复 元素值的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须尽可能减少整个过程的操作步骤。

示例 1:

输入:nums = [1,3,5]
输出:1
示例 2:

输入:nums = [2,2,2,0,1]
输出:0

提示:

n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums 原来是一个升序排序的数组,并进行了 1n 次旋转

方法思路

  1. 问题分析
    旋转排序数组由两个非递减子数组组成,最小值位于这两个子数组的交界处。由于存在重复元素,传统的二分查找需要调整以处理无法确定有序区间的情况。

  2. 关键策略

    • 比较中间值与右边界:通过比较 nums[mid]nums[r] 决定搜索方向。
    • 处理相等情况:当 nums[mid] == nums[r] 时,无法确定最小值位置,但可以安全地缩小右边界。

解决代码

class Solution {
public:
    int findMin(vector<int>& nums) {
        int left = 0, right = nums.size() - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < nums[right]) {
                // 右半部分有序,最小值在左侧或mid处
                right = mid;
            } else if (nums[mid] > nums[right]) {
                // 最小值在右半部分
                left = mid + 1;
            } else {
                // 无法确定,缩小右边界
                right--;
            }
        }
        return nums[left];
    }
};

代码解释

  1. 初始化边界
    leftright 初始化为数组的首尾索引,覆盖整个数组范围。

  2. 循环条件
    while (left < right) 确保在循环结束时 leftright 指向同一位置,即最小值所在。

  3. 中间值计算
    使用 mid = left + (right - left) / 2 防止整数溢出。

  4. 比较逻辑

    • nums[mid] < nums[right]
      右半部分有序,最小值可能在左侧或 mid 处,将右边界移到 mid
    • nums[mid] > nums[right]
      最小值位于右半部分,调整左边界到 mid + 1
    • nums[mid] == nums[right]
      无法确定有序区间,但可排除右边界,逐步缩小范围。
  5. 返回结果
    循环结束时,left 指向最小值的位置,返回 nums[left]

示例分析

  • 示例1:nums = [2,2,2,0,1]
    右边界逐步左移,最终定位到最小值 0

  • 示例2:nums = [3,1,3,3,3]
    中间值与右边界相等时缩小右边界,最终找到最小值 1

复杂度分析

  • 时间复杂度:平均 O(log n),最坏情况下(全重复元素)退化为 O(n)
  • 空间复杂度O(1),仅使用常数空间。

该方法通过灵活调整二分查找策略,高效处理了旋转排序数组中的重复元素问题,确保找到最小值的同时减少不必要的比较。

思考:比较nums[mid]与nums[left]的大小关系是否可行?若nums[mid]<nums[left]不是显然可以说明nums[mid]处于右边的升序区间?

来看以下代码:

int findMin(vector<int>& nums) {
    int left = 0, right = nums.size() - 1;
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < nums[left]) {    // mid可能位于右半部分
            right = mid;                 // 最小值在左半部分或mid处
            left++;                      // 处理左边界重复
        } else if (nums[mid] > nums[left]) { // 左半部分有序
            left = mid + 1;              // 最小值在右半部分
        } else {                         // 无法确定,缩小左边界
            left++;
        }
    }
    return nums[left];
}

要解决旋转排序数组中寻找最小值的问题,尤其是在存在重复元素的情况下,直接比较中间值 nums[mid] 与左边界 nums[left] 的方法存在逻辑缺陷。以下是对问题的详细分析和优化后的解决方案:


关键问题分析

  1. 左边界比较的缺陷
    当使用 nums[mid] < nums[left] 判断时,假设 mid 处于右半部分升序中,这种假设在以下场景中会失败:

    • 完全升序数组:例如 [0,1,2,3,4]mid 会始终大于左边界,导致错误地向右搜索。代入上述代码试试就知道了
    • 旋转点后的最小值位置:若最小值位于右半部分,但左边界值较小(如 [2,0,1,2,2]),比较逻辑会失效。
  2. 右边界比较的优势
    右边界 nums[right] 在旋转数组中天然处于更接近最小值的位置。比较 nums[mid]nums[right] 能更可靠地判断有序区间:

    • 右半部分有序:若 nums[mid] < nums[right],最小值一定在左半部分或 mid 处。
    • 左半部分有序:若 nums[mid] > nums[right],最小值一定在右半部分。

总结

通过比较中间值与右边界,算法能高效定位旋转数组的最小值,同时处理重复元素。直接比较左边界会导致逻辑漏洞,尤其在完全升序或复杂旋转场景下失效。右边界比较策略凭借其天然的区间划分优势,成为解决此类问题的可靠方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值