问题回顾
已知一个长度为 n
的数组,预先按照升序排列,经由 1
到 n
次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,4,4,5,6,7]
在变化后可能得到:
若旋转 4
次,则可以得到 [4,5,6,7,0,1,4]
若旋转 7
次,则可以得到 [0,1,4,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
。
给你一个可能存在 重复 元素值的数组 nums
,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须尽可能减少整个过程的操作步骤。
示例 1:
输入:nums = [1,3,5]
输出:1
示例 2:
输入:nums = [2,2,2,0,1]
输出:0
提示:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
原来是一个升序排序的数组,并进行了 1
至n
次旋转
方法思路
-
问题分析
旋转排序数组由两个非递减子数组组成,最小值位于这两个子数组的交界处。由于存在重复元素,传统的二分查找需要调整以处理无法确定有序区间的情况。 -
关键策略
- 比较中间值与右边界:通过比较
nums[mid]
和nums[r]
决定搜索方向。 - 处理相等情况:当
nums[mid] == nums[r]
时,无法确定最小值位置,但可以安全地缩小右边界。
- 比较中间值与右边界:通过比较
解决代码
class Solution {
public:
int findMin(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] < nums[right]) {
// 右半部分有序,最小值在左侧或mid处
right = mid;
} else if (nums[mid] > nums[right]) {
// 最小值在右半部分
left = mid + 1;
} else {
// 无法确定,缩小右边界
right--;
}
}
return nums[left];
}
};
代码解释
-
初始化边界
left
和right
初始化为数组的首尾索引,覆盖整个数组范围。 -
循环条件
while (left < right)
确保在循环结束时left
和right
指向同一位置,即最小值所在。 -
中间值计算
使用mid = left + (right - left) / 2
防止整数溢出。 -
比较逻辑
nums[mid] < nums[right]
右半部分有序,最小值可能在左侧或mid
处,将右边界移到mid
。nums[mid] > nums[right]
最小值位于右半部分,调整左边界到mid + 1
。nums[mid] == nums[right]
无法确定有序区间,但可排除右边界,逐步缩小范围。
-
返回结果
循环结束时,left
指向最小值的位置,返回nums[left]
。
示例分析
-
示例1:
nums = [2,2,2,0,1]
右边界逐步左移,最终定位到最小值0
。 -
示例2:
nums = [3,1,3,3,3]
中间值与右边界相等时缩小右边界,最终找到最小值1
。
复杂度分析
- 时间复杂度:平均
O(log n)
,最坏情况下(全重复元素)退化为O(n)
。 - 空间复杂度:
O(1)
,仅使用常数空间。
该方法通过灵活调整二分查找策略,高效处理了旋转排序数组中的重复元素问题,确保找到最小值的同时减少不必要的比较。
思考:比较nums[mid]与nums[left]的大小关系是否可行?若nums[mid]<nums[left]不是显然可以说明nums[mid]处于右边的升序区间?
来看以下代码:
int findMin(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] < nums[left]) { // mid可能位于右半部分
right = mid; // 最小值在左半部分或mid处
left++; // 处理左边界重复
} else if (nums[mid] > nums[left]) { // 左半部分有序
left = mid + 1; // 最小值在右半部分
} else { // 无法确定,缩小左边界
left++;
}
}
return nums[left];
}
要解决旋转排序数组中寻找最小值的问题,尤其是在存在重复元素的情况下,直接比较中间值 nums[mid]
与左边界 nums[left]
的方法存在逻辑缺陷。以下是对问题的详细分析和优化后的解决方案:
关键问题分析
-
左边界比较的缺陷
当使用nums[mid] < nums[left]
判断时,假设mid
处于右半部分升序中,这种假设在以下场景中会失败:- 完全升序数组:例如
[0,1,2,3,4]
,mid
会始终大于左边界,导致错误地向右搜索。代入上述代码试试就知道了 - 旋转点后的最小值位置:若最小值位于右半部分,但左边界值较小(如
[2,0,1,2,2]
),比较逻辑会失效。
- 完全升序数组:例如
-
右边界比较的优势
右边界nums[right]
在旋转数组中天然处于更接近最小值的位置。比较nums[mid]
和nums[right]
能更可靠地判断有序区间:- 右半部分有序:若
nums[mid] < nums[right]
,最小值一定在左半部分或mid
处。 - 左半部分有序:若
nums[mid] > nums[right]
,最小值一定在右半部分。
- 右半部分有序:若
总结
通过比较中间值与右边界,算法能高效定位旋转数组的最小值,同时处理重复元素。直接比较左边界会导致逻辑漏洞,尤其在完全升序或复杂旋转场景下失效。右边界比较策略凭借其天然的区间划分优势,成为解决此类问题的可靠方法。