tf.keras.Sequential可以将一些按顺序堆叠的层组织成一个tf.keras.Model类型
有时会见到一些代码用tf.keras.models.Sequential, 这个与tf.keras.Sequential没有区别
model_1 = tf.keras.Sequential()
model_2 = tf.keras.models.Sequential()
print(type(model_1))
print(type(model_2))
两者创建的类型都是<class ‘tensorflow.python.keras.engine.sequential.Sequential’>
tf.keras.Sequential()接收2个可选参数,分别是
- 一个列表,列表里面每个原始是模型里面的一个层
- 名称,用于给模型命名
使用时可以选择几种方式
- 方式1:直接传入顺序排列的层组成的列表到tf.keras.Sequential(list_of_layers,name=‘my_model’)
- 方式2:先不传入任何参数,使用model=tf.keras.Sequential()创建model,然后通过model.add(layer)的方式添加层
- 方式1和2混搭
方式1举例
model = tf.keras.Sequential(
[