tf.keras.Sequential详解

本文详细介绍了tf.keras.Sequential模型的使用,包括如何通过列表传递层、使用model.add()方法添加层,以及模型的属性如distribute_strategy、metrics_names和run_eagerly。此外,还列举了Sequential模型的关键方法,如add、compile、fit和predict等,帮助理解模型的训练、评估和推理过程。
摘要由CSDN通过智能技术生成

tf.keras.Sequential可以将一些按顺序堆叠的层组织成一个tf.keras.Model类型
有时会见到一些代码用tf.keras.models.Sequential, 这个与tf.keras.Sequential没有区别

model_1 = tf.keras.Sequential()
model_2 = tf.keras.models.Sequential()
print(type(model_1))
print(type(model_2))

两者创建的类型都是<class ‘tensorflow.python.keras.engine.sequential.Sequential’>

tf.keras.Sequential()接收2个可选参数,分别是

  • 一个列表,列表里面每个原始是模型里面的一个层
  • 名称,用于给模型命名

使用时可以选择几种方式

  • 方式1:直接传入顺序排列的层组成的列表到tf.keras.Sequential(list_of_layers,name=‘my_model’)
  • 方式2:先不传入任何参数,使用model=tf.keras.Sequential()创建model,然后通过model.add(layer)的方式添加层
  • 方式1和2混搭

方式1举例

model = tf.keras.Sequential(
    [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

️Carrie️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值