TensorFlow1.x入门(1)——计算图的创建与启动

部署运行你感兴趣的模型镜像

系列文章

本教程有同步的github地址

0. 统领篇

1. 计算图的创建与启动

2. 变量的定义及其操作

3. Feed与Fetch

4. 线性回归

5. 构建非线性回归模型

6. 简单分类问题

7. Dropout与优化器

8. 手动调整学习率与TensorBoard

9. 卷积神经网络(CNN)

10. 循环神经网络(RNN)

11. 模型的保存与恢复

计算图的创建与启动

概念

计算图可以认为是TensorFlow中的数据流向图,TensorFlow1.x版本采用的静态图的机制。即先搭图后计算的特点。有了计算图,可以将数据“导流到”计算图的入口处进行数据的运算等相关的处理。

知识点

  • TensorFlow中采用图(Graph)来表示计算任务——即称为计算图。
  • 在会话(Session)的上下文(Context)中执行计算图。
  • 通过张量(Tensor)来表示数据。
  • 通过变量(Variable)来维护状态。
  • 通过Feed合Fetch为任意操作赋值与取值

tf.constant([[4],[5]])是代表了定义了一个shape为(2,1)的常量,数值已经存放进去,可以为这个常量进行命名。

tf.matmul(ve1, ve2)定义了一个矩阵的相乘操作,如果vec1的shape为(1,2),vec2的shape为(2,1)则相乘的结果为(1,1)

tf.Session()定义了会话,所有的操作以及数据都是通过会话导入到计算图中的。

示例

import tensorflow as tf

# 创建常量矩阵 1 * 2的与2 * 1的

vec1 = tf.constant([[1,2]])
vec2 = tf.constant([[3],[4]])

# 创建乘法操作,将vec1与vec2进行相乘

res = tf.matmul(vec1, vec2)

#创建会话`session`,执行已经定义的操作

with tf.Session() as sess:
    res = sess.run(res)
    print(res)

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.9

TensorFlow-v2.9

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值