tensorflow卷积神经网络-池化层

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_19841133/article/details/98992249

在卷积神经网络中,卷积层之间往往会加上一个池化层(pooling layer)。池化层可以非常有效的缩小矩阵的尺寸,从而减少最后全连接层中的参数。

池化层的前向传播的过程也是通过移动一个类似卷积层过滤器的结构完成的,不过池化层过滤器中的计算不是节点的加权和,而是采用更加简单的最大值或者平均运算,进一步缩小矩阵的尺寸。使用得最多得池化层结构是最大池化层,使用平均值操作的池化层被称之为平均池化层(average pooling),其他池化层在实践中用的比较少。

与卷积层的过滤器类似,池化层的过滤器也需要人工设定过滤器尺寸、是否使用全0填充以及过滤器移动的步长等设置,这些设置的意义和卷积层的设置是一样的。

下面代码实现了最大池化层的前向传播算法

import tensorflow as tf

pool = tf.nn.max_pool(
    active_conv, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')

tf.nn.max_pool实现了前向传播过程,ksize提供了过滤器的尺寸(使用的最多的是[1,2,2,1]或[1,3,3,1]),strides提供步信息,padding提供是否使用全0填充。

tf.nn.avg_pool则为平均池化层

展开阅读全文

卷积神经网络池化、归一化、全连接层

02-21

<p style="font-size:16px;">rn 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br />rn<br />rn基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br />rn<br />rn本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br />rn<br />rn通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br />rn<br />rn本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br />rn<br />rn本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。rn</p>rn<div>rn <br />rn</div>rn<p>rn <br />rn</p>rn<p>rn <br />rn</p>rn<p style="font-size:16px;">rn <br />rn</p>rn<p style="font-size:16px;">rn <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> rn</p>rn<p style="font-size:16px;">rn <br />rn</p>

池化层操作

08-09

<p>rn <span> </span> rn</p>rn<p>rn <p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span>rn </p>rn <p>rn 点此链接购买:rn </p>rn <table>rn <tbody>rn <tr>rn <td>rn <a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank"><span style="color:#337FE5;">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</span></a>rn </td>rn </tr>rn </tbody>rn </table>rn</p>rn购买课程后,可扫码进入学习群<span style="font-family:&quot;">,获取唐宇迪老师答疑</span> rn<p>rn <br />rn</p>rn<p>rn <img src="https://img-bss.csdn.net/201908070609118488.jpg" alt="" /> rn</p>rn<p>rn 系列教程从深度学习核心模块神经网络开始讲起,将复杂的神经网络分模块攻克。由神经网络过度到深度学习,详解深度学习中核心网络卷积神经网络与递归神经网络。选择深度学习当下流行框架Tensorflow进行案例实战,选择经典的计算机视觉与自然语言处理经典案例以及绚丽的AI黑科技实战,从零开始带大家一步步掌握深度学习的原理以及实战技巧。课程具体内容包括:神经网络基础知识点、神经网络架构、tensorflow训练mnist数据集、卷积神经网络、CNN实战与验证码识别、自然语言处理word2vec、word2vec实战与对抗生成网络、LSTM情感分析与黑科技概述。rn</p>

没有更多推荐了,返回首页