- 博客(201)
- 收藏
- 关注
原创 (pytorch进阶之路六)Swin Transformer实现
如果想详细的看还是得看论文《Swin Transformer: Hierarchical Vision Transformer using Shifted Windows》Swin是shift和window两个单词的结合Swin-T主要有4个点,patch embedding,Swin Transformer Block,patch merging, classificationSwin-T对复杂度和效果都做了优化,CV和NLP领域效果都很好,对未来多模态方向提供方便......
2022-07-17 03:03:06
2233
原创 (pytorch进阶之路五)RNN/LSTM/LSTMP/GRU
写在前面:RNN老生常谈也太简单可以跳过了,只是留一个档…现在主要用的是RNN的变体,GRU或者LSTM模型有单向、双向、多个单向双向叠加,nn RNN API中num_layers就是设置堆叠多少层,如果设置双向,那么输出大小是hidden size * 2所谓的循环神经网络,在对一个序列进行建模的时候,再算每一个表征的时候,考虑上过去的历史信息,历史信息就通过记忆单元保存,每个时刻都存记忆单元中去获取历史信息,辅助当前时刻去做一个预测。双向有两条链,FL和BL,FL输出与当前输入和过去记忆单元有关,BL
2022-07-10 08:47:58
678
原创 (pytorch进阶之路四)Vision Transformer
Vision Transformer 用的是Encoder only类型,主要用的就是Transformer Encoder模块VIT的想法就是将Transformer应用到图像识别上去但是直接应用有个问题,NLP是单词为单位,一句话的词数还是比较少的,但是图片的基本单位是一个个像素点,数量多得多,导致计算量会非常的大。图片的一个像素点不包含多少信息量,对于图片它的信息量主要还是聚焦在一小块区域上。直接的想法就是将很多的像素点组成块,图像分成很多个块,将图像块当作一个token送入到transformer中
2022-07-07 11:07:10
1428
原创 (pytorch进阶之路三)conv2d
但还是大致说一下,in_channel = 2,out_channel = 3,所以kernel的数量是6,输出的每个通道由输入的每个通道与各自的kernel进行卷积操作,每个输出通道再将卷积操作的矩阵再加起来,最后将所有输出通道的矩阵拼接。步长为1的情况下,输出大小 = 输入大小 - 核的大小 + 2*padding大小 + 1所以我们要让输出和输入大小一致,根据公式可以计算出padding大小padding=‘same’ 自动计算大小比较简单,直接略过说明了原......
2022-07-05 22:38:14
1196
原创 随心玩玩(九)kali linux学习(待更新)
写在前面:又是不想学习的一天,随意玩点别的东西吧,不知不觉来到第⑨篇了下载地址:http://old.kali.org/kali-images/下载一个amd64 isovmware绿色安装:http://xz.w10a.com/Small/VMware8_ch_pj.rar打开vm,创建新的虚拟机,典型,选择iso文件,选择linux系统,版本选择debian 8.x 64位设置一下设备进入虚拟机,选择图形化安装选择简体中文,然后看这着来,继续,安装即可设置主机名,域名,用户密码,设置磁盘,默认
2022-06-30 14:45:20
510
原创 随心玩玩(八)jenkins学习(待更新)
安装jenkins访问 8080端口安装gog(可选插件管理 -> 可选项 -> filter ->credential配置账号密码方式配置ssh,puttygen生成RSA密钥在远程仓库保存公钥jenkins凭证管理保存私钥安装角色管理,这个可以不装必装,装一个gitee或者github插件新建项目时在配置里面可以配置仓库配置好后,试着构建项目查看构建日志代码会拉取到/var/jenkins_home/workspace/目录把安装好的maven移动到/opt/maven
2022-06-30 14:44:53
901
原创 (pytorch进阶之路二)transformer学习与难点代码实现
transformer和cnn、rnn最大的区别是它的先验假设(归纳偏置)比较少,没有假设局部关联性(cnn),也没有去假设有序建模性(rnn),它的假设是任意一个位置都可以与其他位置有关联性,基本上没有任何的先验假设。好处是相比于cnn和rnn它可以更快速的学习无论是长时还是短时的关联性。但是数据量的要求与先验假设的程度成反比,也就是说先验假设越多,我们人为注入了更多的我们的经验,模型就更容易去学,需要的数据量就越低。因此transformer模型我们也不是可以无脑用,因为它的先验假设很少,要用好tran
2022-06-29 21:35:16
1275
原创 对领域驱动设计DDD理解
写在前面:9月份研究生开学,实习也该告一段落了。也许最好的学习就是将已会的知识再系统化吧。开发不应关注点一直都是在单个功能的实现上,也要考虑整个系统的可维护性和可拓展性。话虽如此,但是每次写代码后我自己也没眼去看。传统POJO只存在getter、setter方法,但是DP却包含了更多的逻辑结构,可能有初始化、校验、属性处理等,也就是说DP不仅拥有属性,也拥有属性相关的职责。但是边界如何界定、强度如何把握、内聚的边界就需要有很丰富的经验了。DP的三原则:让隐性的概念显性化、让隐性的上下文显性化、封装多对象行
2022-06-20 17:26:23
2497
原创 随心玩玩(七)ELK日志系统配置部署
文章目录概述ElasticsearchLogstashKibanaELK 协议栈体系结构最简单架构ELK结构Logstash 作为日志搜集器概述ELK是一整套解决方案,是三个软件产品的首字母缩写,Elasticsearch,Logstash 和 Kibana。这三款软件都是开源软件,通常是配合使用,故被简称为ELK协议栈。日常工作中会面临很多问题,通过工作经验,检查报错流,迅速判断问题出在哪。系统日志:/var/log 目录下的问题的文件程序日志: 代码日志(项目代码输出的日志)服务应用日志n
2022-05-25 11:35:08
961
原创 java8阅读笔记(更完)
做做笔记,喝喝茶文章目录tocLambda流函数式编程第一章第二章 行为参数化传递第三章 Lambda@FunctionalInterfacePredicate接口Consumer接口Function接口自动装箱与拆箱接口小结lambda抛错异常使用在外层作用域中定义的变量方法引用使用方法构造函数引用sort优化比较器复合谓词复合函数复合四、五章 流概述中间操作终端操作Optional前瞻数值流由值创建流创建无限流第六章 Collector 用流收集数据概述用法分组分区Collector
2022-02-25 14:09:12
2120
原创 kafka学习(二)生产者
文章目录生产者消息发送流程发送原理生产者重要参数列表异步发送普通异步发送带回调函数的API不带回调的API同步发送生产者分区分区好处生产者发送消息的分区策略自定义分区器生产者如何提高吞吐量数据可靠性数据传递语义数据去重使用幂等性生产者事务数据有序生产者消息发送流程发送原理在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender
2022-02-23 16:22:01
399
原创 kafka学习(一)搭建与基本命令
概念的东西都略过,感觉和rabit MQ差不多搭建zookeeperdocker pull zookeeper:3.4.9docker run --privileged=true -d --name zookeeper --publish 2181:2181 -d zookeeper:3.4.9创建kafka环境docker pull wurstmeister/kafkadocker run -d --name kafka -p 9092:9092 -e KAFKA_BROKER_ID
2022-02-23 14:03:22
1548
原创 progeress bar
tqdm 是一个快速,可扩展的Python进度条,可以在 Python 长循环中添加一个进度提示信息,用户只需要封装任意的迭代器 tqdm(iterator)。from tqdm import tqdmfor i in tqdm(range(1000)): #do something pass egimport torchimport torch.nn as nnfrom tqdm import tqdmfrom torch.utils.data import T
2021-06-12 09:38:27
169
原创 (pytorch进阶之路一)torchtext.data.Field
torchtext的最新版本是0.8.1了,但我from torchtext.data import Field不知道为什么找不到Field,只好先退回0.6.0版本了class Field 继承自(RawField)Field定义了一个数据类型以及转换为Tensor的指令。Field为常见的文本处理数据类,这些数据类型可以用张量表示。 它持有一个Vocab对象,该对象定义了字段元素的可能值集以及它们相应的数字表示。字段对象还持有与数据类型如何被数值化有关的其他参数,例如标记化方法和应该产生的张量的
2021-06-11 23:04:29
5365
7
原创 pytorch入门学习
因为期末要做nlp,快速入门一下pytorch文章目录DatasetTensorboardTransformstorchvision.modeldataloadernn.Modulefunctional.Convolution Layersnn.Convolution Layersnn.Pooling layersnn.Padding Layersnn.Non-linear ActivationsNormalization LayersRecurrent LayersTransformer Layers
2021-06-04 01:04:54
660
1
原创 (英语)热门话题词汇整理 (更完)
文章目录政治法律政治statment 陈述dictate 口述deploy 部署detain 扣留detain a suspect 扣留嫌疑犯impair 削弱dominate 支配dictate 支配、指使mandate 授权、委托办理surplus 剩余doctrine 学说senator 参议员employ 运用ballot 投票rein in 限制curb 限制nominee 候选人eligible 有资格的qualified 有资格的jury duty 陪
2021-05-22 22:39:36
1168
原创 (408笔记)计网 第 3 章 数据链路层
第 3 章 数据链路层使用点对点信道的数据链路层数据链路和帧数据链路层使用的信道主要有以下两种类型:点对点信道。这种信道使用一对一的点对点通信方式。广播信道。这种信道使用一对多的广播通信方式,因此过程比较复杂。广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发数据链路层模型链路(link)是一条无源的点到点的物理线路段,中间没有任何其他的交换结点。数据链路(data link) 除了物理线路外,还必须有通信协议来控制这些数据的传输。若把实现这些协议的硬件
2021-05-21 10:35:00
227
原创 (408笔记)计网 第 2 章 物理层
第 2 章 物理层物理层的基本概念物理层的主要任务描述为确定与传输媒体的接口的一些特性机械特性 指明接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。电气特性 指明在接口电缆的各条线上出现的电压的范围。功能特性 指明某条线上出现的某一电平的电压表示何种意义。过程特性 指明对于不同功能的各种可能事件的出现顺序。数据通信的基础知识数据通信系统的模型有关信道的几个基本概念单向通信(单工通信)——只能有一个方向的通信而没有反方向的交互。双向交
2021-05-20 21:23:21
201
原创 (408笔记)计网 第 1 章 概述
第 1 章 概述计算机网络在信息时代中的作用21 世纪的一些重要特征就是数字化、网络化和信息化,它是一个以网络为核心的信息时代。网络现已成为信息社会的命脉和发展知识经济的重要基础。网络是指“三网”,即电信网络、有线电视网络和计算机网络。发展最快的并起到核心作用的是计算机网络。因特网(Internet)的发展进入 20 世纪 90 年代以后,以因特网为代表的计算机网络得到了飞速的发展。已从最初的教育科研网络逐步发展成为商业网络。已成为仅次于全球电话网的世界第二大网络。因特网的意义
2021-05-20 21:22:34
320
原创 线性代数-基础篇笔记(第五、第六章)
文章目录第五章特征值和特征向量相似矩阵可相似对角化可相似对角化的充分条件可相似对角化的充分必要条件实对称矩阵施密特正交化第六章什么是二次型其标准形二次型的标准形和规范形二次型的秩合同正交变换法配方法惯性定理二次型(合同)例题正定二次型可逆线性变换不改变二次型的正定性正定的充分必要条件正定的必要条件正定二次型例题第五章特征值和特征向量的概念和性质; 相似的概念和性质;可相似对角化的充分必要条件;什么是相似对角矩阵;什么是实对称矩阵;实对称矩阵的特征值、特征向量及其相似对角矩阵。特征值和特征向量Aa
2021-05-09 23:10:47
3722
2
原创 数一常用结论整理
慢更高数容易忽略的等价无穷小:1-cosax ~ (a/2)xsinx/x这个经常考,sinx/x的图像常用n阶导sinwx在半个周期上的积分=2/w半个周期上的三等分中间的那部分的积分=1/wk≠l,kl为正整数特殊积分关于三角函数定积分简化重要极限特殊地,a=0时线代矩阵快速相乘法,n=3阶举例,A*B = (a1,a2,a3)*B,将A写成3个列向量概率论E(X2) = μ2
2021-05-09 21:45:57
1535
原创 网络与信息安全笔记(更完)
写在前面:当时记笔记的时候忘记记录章节了,所以没办法体系,不过是选修课就无所谓啦…文章目录第一节 初识ftp嗅探arp欺骗第二节 现代密码学之分组密码Windows口令破解原理第三节 现代密码学之流密码第四节 数论基础第五节 PKC 公共密钥加密第一节 初识完整性、保密性、可用性、可控性和不可否认性保密性也称机密性,是不将有用信息泄漏给非授权用户的特性完整性是指信息在传输、交换、存储和处理过程中,保持信息不被破坏或修改、不丢失和信息未经授权不能改变的特性,也是最基本的安全特征。可用性也称有效
2021-04-15 23:53:56
978
原创 概率论-基础篇笔记(更完)
第一章 随机事件和概率事件的关系与运算事件关系:包含(a包含b,说明b发生a一定发生)相等交、并、补互斥对立差(A-B = AB‾\overline{\text{B}}B)事件运算律交换、结合、分配律对偶律:A∪B‾=A‾∩B‾\overline{\text{A∪B}} = \overline{\text{A}} ∩ \overline{\text{B}}A∪B=A∩BA⊃B=A‾⊂B‾A⊃B = \overline{\text{A}}⊂ \overline{\text{B}}A
2021-04-08 00:04:48
6204
1
原创 扩展欧几里得算法
扩展欧几里得算法是常用来计算逆元的,逆元详见《离散数学》具体例子:扩展欧几里得算法是从我们熟悉的辗转相除算法推广而来的现有gcd(a,b)公式,我们设x为a的系数,y为b的系数,r为余数,q是商通过使用辗转相除法算法得到等式后进行移项,我们就能得到下面粉红色部分的公式,如果余数rn=1,这里就是我们需要的等式,从rn = rn-2 - qn * rn-1反推回去最终得到rn = ax + by最终:b就是y关于mod a的乘法逆元,a是x关于mod b的乘法逆元...
2021-04-07 23:06:22
513
原创 高数笔记基础篇(更完)
留给我的时间不多了…文章目录第一章 函数 极限 连续函数极限常用的基本极限常见等价无穷小要背 mark常见泰勒公式第一章 函数 极限 连续函数取整函数复合函数y=fg(x)条件是g的值域∩f的定义域≠空集反函数存在的充要条件:y有且仅有一个对应的x,如y=x2就没有反函数函数fx :x映射到y反函数f-1x : 从y映射到x求y=shx的反函数,解法:将ex视作整体,分子分母同乘ex初等函数arctanxarcsinxarccosx奇偶性奇 + 奇 =
2021-04-03 22:12:10
40734
26
原创 lucene入门
文章目录Lucene实现全文检索的流程1、创建索引1)获得文档2)构建文档对象3)分析文档4)创建索引2、查询索引1)用户查询接口2)把关键词封装成一个查询对象3)执行查询4)渲染结果创建索引库代码查询索引库Lucene实现全文检索的流程1、创建索引1)获得文档原始文档:要基于那些数据来进行搜索,那么这些数据就是原始文档。原始文档类型获得方式搜索引繁使用爬虫获得原始文档站内搜索数据库中的数据本地文件搜索使用io流读取磁盘上的文件2)构建文档对象每个原始
2021-04-03 13:24:54
215
原创 随心玩玩(六)nginx从入门到删库跑路(待更)
文章目录支离破碎的概述windows安装nginx服务器集群产生的问题支离破碎的概述nginx的作用?搭建http服务器、做集群/负载均衡(减轻单台服务器的压力)、反向代理(多台服务器集群可以使用nginx做反向代理并且不暴露真实ip地址)、防盗链/黑白名单、解决跨域问题(搭建接口网关)、防ddos、虚拟服务器(可以实现在一台服务器虚拟出多个网站)、静态服务器(访问静态资源)、nginx占内存小、轻量级服务器分布式、微服务、高并发、高可用、消息中间件类型nginx反向代理的服务器有lvs、F5
2021-02-02 15:19:43
422
原创 随心玩玩(五) redis从入门到入土
文章目录java缓存机制springboot缓存支持ehcache整合java缓存机制在不使用redis的时候,我们想存放非结构型数据时我们可以使用jvm的内置缓存。什么是jvm内置缓存?值放在jvm中的缓存。mybatis、hibernate存在二级缓存,是session会话级别的,他们底层用的缓存机制分别是oscache和ehcache,这两个都属于jvm内置缓存。oscache和ehcache有什么区别?oscache主要针对数据库访问层,ehcache主要针对jsp页面缓存sess
2021-01-31 21:21:36
533
原创 springboot1学习(九)项目打包
使用mvn package打包首先pom文件指定入口,mainClass标签改为自己的入口位置注意一下<version>1.3.3.RELEASE</version>版本号对应 <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId>
2021-01-29 23:43:19
143
原创 springboot1学习(八)多环境配置、修改端口号、yml配置文件
多环境配置日常开发中,分为不同的环境配置文件,简单的可分为开发环境和上线环境,需要区分配置环境test—本地开发环境sit—测试环境prc—预生产环境prd—生产环境我们可以新建3个properties,分别对应不同的环境主配置文件application.properties不变,其中可以使用spring.profiles.active=选择哪个环境如spring.profiles.active=sit,表示加载application-sit.propertiesspring.profi
2021-01-29 23:07:02
2717
原创 springboot1学习(七)读取配置文件
项目中我们可以自定义配置信息例子,我可以在application.properties中加入自己的配置信息MY_CSDN_URL=https://blog.csdn.net/qq_19841133在想使用的地方加入引入@RestController@RequestMapping("/test1/UserController")public class User1Controller { @Value("${MY_CSDN_URL}") private String
2021-01-29 22:20:25
134
原创 springboot1学习(六)异步调用方法
什么是异步调用?类似于多线程运行代码。写个接口 @RequestMapping("/printMsg") public void printMsg(){ System.out.println("###############sendMsg1##################"); user1Service.printMsg(); System.out.println("###############sendMsg4###############
2021-01-29 22:10:09
167
原创 springboot1学习(五)创建定时任务
使用@Scheduled注解在Spring Boot的主类中加入@EnableScheduling注解,启用定时任务的配置新建schedule包,新建ScheduledTasks.javaimport org.springframework.scheduling.annotation.Scheduled;import org.springframework.stereotype.Component;import java.text.SimpleDateFormat;import java.ut
2021-01-29 21:53:32
114
原创 springboot1学习(四)整合log4j、AOP
很简单新建log4j.properties#log4j.rootLogger=CONSOLE,info,error,DEBUGlog4j.rootLogger=info,error,CONSOLE,DEBUGlog4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout log4j.appender.CONSOL
2021-01-29 21:42:13
123
原创 springboot1学习(三)atomikos分布式事务
文章目录spring事务分类声明式事务atomikos分布式事务spring事务分类spring事务可分为编程式事务和声明式事务声明式事务又可分为xml版和注解版声明式事务写service层,注意添加 @Transactional注解import org.springframework.transaction.annotation.Transactional;@Servicepublic class User1Service { @Autowired private T
2021-01-29 17:15:17
285
原创 Springboot1学习(二)多数据源整合
文章目录@SpringBootApplication搭建多数据源项目思路分包结构整合多数据源实现@SpringBootApplication启动项目整合了常用的注解,也有扫包的作用,扫包的范围是当级包下,因此要注意启动类的位置。它整合了这三个注解@Configuration启动配置@EnableAutoConfiguration创建spring容器,自动加载@ComponentScan包扫描没有整合mybatis的扫包,所以@MapperScan(basePackages=)还是要的
2021-01-29 15:37:06
272
原创 Springboot1学习(一)快速入门
拖了好久,终于学开始springboot,馒馒来吧。看了看还有好多没学完…先学springboot1吧,磨刀不误砍柴功文章目录springboot概述快速入门第二种启动方式静态资源访问全局异常捕获FreeMarker页面渲染springboot概述支离破碎的语言随便写一下吧,反正都不看的。捂脸目前spingboot主流敏捷开发无需tomcat,内置了tomcat减少xml配置,改用propertiesspringcloud+springboot微服务技术springboot底层封
2021-01-28 22:18:06
406
2
原创 闭关修炼(二十五)基础web安全
不是特别难,主要是积累经验赶紧学springboot去了,好拖延啊。捂脸文章目录表单重复提交前端解决方法接口如何防止模拟http请求使用Filter防止XSS攻击SQL注入常见的攻击有哪些?SQL注入,XSS,CSRF(和表单重复提交是一个类型)最基本的WEB安全防范:密码设为英文+数字+特殊符号,访问白名单表单重复提交表单重复提交十分常见,如果什么防范都不做的话,那肯定是不好的表单重复提交主要原因是网络延迟简单的处理办法是前端使用token但是无法防止模拟http请求先模拟问题发
2021-01-27 19:24:20
276
原创 随心玩玩(四)docker从入门到入土
什么?我还不会docker?垂死病中惊坐起共勉。文章目录Docker概述前置学习 linux实践https://blog.csdn.net/qq_19841133/article/details/108574319Docker概述docker为什么会出现?开发要配置环境,项目开发上线环境部署也要配置环境,十分的麻烦。在项目发布时,使用docker就可以将项目带上环境一块打包。Docker的思想来自于集装箱,项目打包放入集装箱中,每个箱子间相互隔离。docker通过隔离机制避免端口
2021-01-27 12:43:38
1967
原创 闭关修炼(二十四)浅入了解跨域问题
本来想说是深入研究一下,但是水平有限,也就是手放在水面往下多0.25厘米的深度的样子,掠于皮毛。文章目录什么是跨域问题跨域问题模拟跨域问题如何解决response添加请求头解决跨域问题jsonp解决跨域问题httpclient内部转发解决跨域问题写在后面什么是跨域问题跨域其实是浏览器的一个安全机制,请求访问域名与AJAX请求地址不一致,浏览器会无法返回请求结果。具体的例子,现在我在浏览器访问url地址www.aaa.com/a,而这个页面后台服务器又发送请求给www.bbbb.com/b,因为
2021-01-25 22:20:53
361
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅