(头冷)数据结构学习日志1一(萌新向)--时间复杂度的理解(By Ivan小黄)

时间复杂度在数据结构和算法里面算是很基础一个的基本概念了,万事开头难。所以我们基本的东西还是得好好学,打下坚实的基础才行~
// 坚持着熬夜更博客(求超越保佑我不要猝死(手动黑脸))

(
引用 作者:raymondCaptain
链接:https://www.jianshu.com/p/f4cca5ce055a
來源:简书
)感谢大佬!!!

首先我们假设计算机每执行一行代码需要运算一次
例:
int main()
{
    cout << "杨超越最可爱" << endl; //运算 1 次
        return 0; //又运算 1 次
}
//那么这个main函数一个运算了两次

又例如:
int Func(int n) {
    for(int i = 0; i<n; i++) {         // 运算 (n + 1) 次
        printf("杨超越最好看!\n");      // 运算 n 次
    }
    return 0;       // 运算 1 次
}
这个方法需要 (n + 1 + n + 1) = 2n + 2 次运算。

接下来老夫要来放-

时间复杂度的定义:

我们把 算法需要执行的运算次数 用 输入大小n 的函数 表示,即 T(n) 。
此时为了 估算算法需要的运行时间 和 简化算法分析,我们引入时间复杂度的概念。
定义: 存在常数 c,使得当 N >= c 时 T(N) <= f(N),表示为 T(n) = O(f(n)) 。
如图:这里写图片描述

因为f(n) 的增长速度是大于或者等于 T(n) 的,即T(n) = O(f(n)),所以我们可以用 f(n) 的增长速度来度量 T(n) 的增长速度,所以我们说这个算法的时间复杂度是 O(f(n))。

算法的时间复杂度,用来度量算法的运行时间,记作: T(n) = O(f(n))。它表示随着 输入大小n 的增大,算法执行需要的时间的增长速度可以用 f(n) 来描述。

显然如果 T(n) = n^2,那么 T(n) = O(n^2),T(n) = O(n^3),T(n) = O(n^4) 都是成立的,但是因为第一个 f(n) 的增长速度与 T(n) 是最接近的,所以第一个是最好的选择,所以我们说这个算法的复杂度是 O(n^2) 。

那么当我们拿到算法的执行次数函数 T(n) 之后怎么得到算法的时间复杂度呢?

1.

我们知道常数项并不影响函数的增长速度,所以当 T(n) = c,c 为一个常数的时候
,我们说这个算法的时间复杂度为 O(1);如果 T(n) 不等于一个常数项时,直接将常数项省略。

*比如
第一个 杨超越最可爱 的例子中 T(n) = 2,所以我们说那个函数(算法)的时间复杂度为 O(1)。
如果T(n) = n + 29,此时时间复杂度为 O(n)。*

2.

高次项对于函数的增长速度的影响是最大的。n^3 的增长速度是远超 n^2 的,
同时 n^2 的增长速度是远超 n 的。 同时因为要求的精度不高,所以我们直接忽略低次项。

比如
T(n) = n^3 + n^2 + 29,此时时间复杂度为 O(n^3)。

3.

因为函数的阶数对函数的增长速度的影响是最显著的,所以我们忽略与最高阶相乘的常数。

比如
T(n) = 3n^3,此时时间复杂度为 O(n^3)。

综合起来:如果一个算法的执行次数是 T(n),那么只保留最高次项,同时忽略最高项的系数后得到函数 f(n),此时算法的时间复杂度就是 O(f(n))。

补:提供下列四个便利的法则,这些法则都是可以简单推导出来的,总结出来以便提高效率。

1.

对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个
循环的时间复杂度为 O(n×m)。

void aFunc(int n) {
    for(int i = 0; i < n; i++) {         // 循环次数为 n
     cout <<  "杨超越最可爱" ;      // 循环体时间复杂度为 O(1)
    }
}

此时时间复杂度为 O(n × 1),即 O(n)。

2.

对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c…,则这个循环的时间复杂度为 O(n×a×b×c…)。分析的时候应该由里向外分析这些循环。

void aFunc(int n) { for(int i = 0; i < n; i++) { // 循环次数为 n
 for(int j = 0; j < n; j++) { // 循环次数为 n 
  cout << "杨超越最可爱" ;  // 循环体时间复杂度为 O(1) 
                  }
        }
  }

此时时间复杂度为 O(n × n × 1),即 O(n^2)。

3.

对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。

void aFunc(int n) {
 // 第一部分时间复杂度为 O(n^2)
 for(int i = 0; i < n; i++)
  { 
   for(int j = 0; j < n; j++)  
   {  
      cout << "杨超越最可爱" ; 
    }  
  } 

// 第二部分时间复杂度为 O(n) 
 for(int j = 0; j < n; j++) {
 { 
  cout << "杨超越最可爱" ;
  }
 }

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

4.

对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。

void aFunc(int n) { 
 if (n >= 0)  
 { // 第一条路径时间复杂度为  O(n^2)  
 for(int i = 0; i < n; i++) 
  {  
  for(int j = 0; j < n; j++) 
    {  
   cout << "杨超越最可爱" ;
     } 
  }  
     }  
else { // 第二条路径时间复杂度为 O(n) 
 for(int j = 0; j < n; j++)  
 {  
 cout << "杨超越最可爱" ;
 }  
 }

此时时间复杂度为 max(O(n^2), O(n)),即 O(n^2)。

所以时间复杂度分析的基本策略是:从内向外分析,从最深层开始分析。如果遇到函数调用,要深入函数进行分析。

好啦!完啦!睡觉啦~
明天上午又是四节数据结构课
愿世界善待我,晚安~
这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值