算法之路--高斯分布(一)

 

正态分布(英语:normal distribution)又名高斯分布(英语:Gaussian distribution),是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明的随机变量。可以判断各种情况出现的概率,进而指导下一步的操作

随机变量是取值有多种可能并且取每个值都有一个概率的变量。它分为离散型和连续型两种,离散型随机变量的取值为有限个或者无限可列个(整数集是典型的无限可列),连续型随机变量的取值为无限不可列个(实数集是典型的无限不可列)。

(一)参数含义:

æ­£æåå¸å¬å¼

(1)正态分布有两个参数,即期望(均数)μ和标准差σ,σ2为方差。

(2) 正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。

(3)μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以x = μ 为对称轴,左右完全对称。正态分布的均             数、中位数、众数相同,均等于μ . 

(4) σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。  正态曲线下面积的分布规律:如果用其标准差作为衡量单位,则以均数为中心,正负1个标准差内,即(μ-σ,μ+σ)区间内,正态分布曲线下的面积为总面积的68.27%;正负2个标准差内,即(μ-2σ,μ+2σ)区间内,面积为95.44%;正负3个标准差,即(μ-3σ,μ+3σ)区间内,面积为99.74%.这是由正态分布的性质所决定的。

(二)正态分布中一些值得注意的量:

  • 密度函数关于平均值对称
  • 平均值与它的众数(statistical mode)以及中位数(median)同一数值。
  • 正态分布图像关于x=μ对称,其中μ为正态分布的期望值;
  • 相互独立的正态分布满足加和性
  • 正态分布的标准差越小,图像在x=μ处曲率半径越小,图像越高耸,也就是意味着取值在x=μ附近的几率越大。反之亦然;
  • 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

             横轴区间(μ-σ,μ+σ)内的面积为68.268949%。P{|X-μ|<σ}=2Φ(1)-1=0.6826

  • 95.449974%的面积在平均数左右两个标准差2 \sigma的范围内。

             横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%。P{|X-μ|<2σ}=2Φ(2)-1=0.9544

  • 99.730020%的面积在平均数左右三个标准差3 \sigma的范围内。

             横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。P{|X-μ|<3σ}=2Φ(3)-1=0.9974

  • 99.993666%的面积在平均数左右四个标准差4 \sigma的范围内。
  • 正态分布在实际管理应用中有3σ和6σ法则;
  • 函数曲线的拐点(inflection point)为离平均数一个标准差距离的位置。
  • 图像的拐点在x=μ+σ和x=μ-σ处;
  • 正态分布为中心极限定理的大样本统计分布;

若随机变量X服从一个位置参数为\mu、尺度参数为\sigma的正态分布,记为:

XN(μ,σ2),

则其概率密度函数为

f(x) = {1 \over \sigma\sqrt{2\pi} }\,e^{- {​{(x-\mu )^2 \over 2\sigma^2}}}

正态分布(概率密度函数)的数学期望值或期望值\mu等于位置参数,决定了分布的位置;其方差\sigma^2的开平方或标准差\sigma等于尺度参数,决定了分布的幅度。

正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线(类似于寺庙里的大钟,因此得名)。我们通常所说的标准正态分布是位置参数\mu =0,尺度参数\sigma^2 = 1的正态分布(见下图中红色曲线)。

 (三) 概率密度函数(PDF):

Probability density function for the Normal distribtion

概率密度函数的含义:概率密度函数f(x)它反应了概率在x点附近的密集程度。

  解释:就像质量密度不是质量一样,概率密度也不是概率。但是,质量密度表达了某一点附近所含有质量的多寡。同样,某一点处的概率密度,也表达了随机变量落入那一点附近的概率的大小程度。假设,在X=a处概率密度为0.1,在X=b处的概率密度为0.2,那么随机变量落入b附近的概率比之随机变量落入a附近的概率要大。

正态分布概率密度函数均值为\mu 方差\sigma^2 (或标准差\sigma)是高斯函数的一个实例:

f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \, \exp \left( -\frac{(x- \mu)^2}{2\sigma^2} \right)

(请看指数函数以及\pi.)

如果一个随机变量X服从这个分布,我们写作X XN(μ,σ2). 如果\mu =0并且\sigma =1,这个分布被称为标准正态分布,这个分布能够简化为

f(x) = \frac{1}{\sqrt{2\pi}} \, \exp\left(-\frac{x^2}{2} \right)f(x) = \frac{1}{\sqrt{2\pi}} \, \exp\left(-\frac{x^2}{2} \right)

(四)累计分布函数(CDF)

累积分布函数的作用:

1.为什么需要分布函数?

  对于离散型随机变量,可以直接用分布律来描述其统计规律性,而对于非离散型的随机变量,如连续型随机变量,因为我们无法一一列举出随机变量的所有可能取值,所以它的概率分布不能像随机变量那样进行描述,于是引入PDF,用积分来求随机变量落入某个区间的概率。分布律不能描述连续型随机变量,密度函数不能描述离散随机变量,因此需要找到一个统一方式描述随机变量统计规律,这就有了分布函数。另外,在现实生活中,有时候人们感兴趣的是随机变量落入某个范围内的概率是多少,如掷骰子的数小于3点的获胜,那么考虑随机变量落入某个区间的概率就变得有现实意义了,因此引入分布函数很有必要。

2. 分布函数的意义

  分布函数F(x)在点x处的函数值表示X落在区间(−∞,x]内的概率,所以分布函数就是定义域为R的一个普通函数,因此我们可以把概率问题转化为函数问题,从而可以利用普通的函数知识来研究概率问题,增大了概率的研究范围。

累积分布函数是指随机变量X小于或等于x的概率,用密度函数表示为

F(x;\mu,\sigma)=\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^x \exp \left( -\frac{(x - \mu)^2}{2\sigma^2}\ \right)\, dx.

正态分布的累积分布函数能够由一个叫做误差函数特殊函数表示:

\Phi(z)=\frac12 \left[1 + \mathrm{erf}\,(\frac{z-\mu}{\sigma\sqrt2})\right] .

标准正态分布的累积分布函数习惯上记为Φ,它仅仅是指μ = 0,σ = 1时的值,

\Phi(x)=F(x;0,1)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x\exp\left(-\frac{x^2}{2}\right)\, dx.

将一般正态分布用误差函数表示的公式简化,可得:

\Phi(z)=\frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{z}{\sqrt{2}} \right) \right].

它的反函数被称为反误差函数,为:

\Phi^{-1}(p)=\sqrt2\;\operatorname{erf}^{-1} \left(2p - 1 \right).

该分位数函数有时也被称为probit函数。probit函数已被证明没有初等原函数。

正态分布的分布函数Φ(x)没有解析表达式,它的值可以通过数值积分泰勒级数或者渐进序列近似得到。

(五)概念及特征:

一、正态分布的概念

由一般分布的频数表资料所绘制的直方图,图⑴可以看出,高峰位于中部,左右两侧大致对称。我们

正态分布研究图1正态分布研究图1

设想,如果观察例数逐渐增多,组段不断分细,直方图顶端的连线就会逐渐形成一条高峰位于中央(均数所在处),两侧逐渐降低且左右对称,不与横轴相交的光滑曲线图⑶。这条曲线称为频数曲线或频率曲线,近似于数学上的正态分布(normal distribution)。由于频率的总和为100%或1,故该曲线下横轴上的面积为100%或1。

为了应用方便,常对正态分布变量X作变量变换。

该变换使原来的正态分布转化标准正态分布(standard normal distribution),亦称u分布。u被称为标准正态变量或标准正态离差(standard normal deviate)。

正态分布研究图2正态分布研究图2

正态分布研究图3正态分布研究图3

实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率。正态曲线下一定区间的面积可以通过附表1求得。对于正态或近似正态分布的资料,已知均数和标准差,就可对其频数分布作出概约估计。

查附表1应注意:①表中曲线下面积为-∞到u的左侧累计面积;②当已知μ、σ和X时先按式u=(X-μ)/σ求得u值,再查表,当μ、σ未知且样本含量n足够大时,可用样本均数X1和标准差S分别代替μ和σ,按u=(X-X1)/S式求得u值,再查表;③曲线下对称于0的区间面积相等,如区间(-∞,-1.96)与区间(1.96,∞)的面积相等,④曲线下横轴上的总面积为100%或1。

图2 正态曲线与标准正态曲线的面积分布

正态分布的应用某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布;有些资料虽为偏态分布,但经数据变换后可成为正态或近似正态分布,故可按正态分布规律处理。

正态分布面积图1正态分布面积图1

正态分布面积图2正态分布面积图2

一般正态分布与标准正态分布的区别与联系

正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。

(六)例子

例1.10 某地1993年抽样调查了100名18岁男大学生身高(cm),其均数=172.70cm,标准差s=4.01cm,①估计该地18岁男大学生身高在168cm以下者占该地18岁男大学生总数的百分数;②分别求X+-1s、X+-1.96s、X+-2.58s范围内18岁男大学生占该地18岁男大学生总数的实际百分数,并与理论百分数比较。

本例,μ、σ未知但样本含量n较大,按式(3.1)用样本均数X和标准差S分别代替μ和σ,求得u值,u=(168-172.70)/4.01=-1.17。查附表标准正态曲线下的面积,在附录表的左侧找到-1.1,表的上方找到0.07,两者相交处为0.8790。1-0.8790=0.1210=12.10%。该地18岁男大学生身高在168cm以下者,约占总数12.10%。其它计算结果见表3。

X=172.70,s=4.04。

X+-s=172.70-4.04~172.70+4.04

X+-1.96s=172.70-1.96*4.04~172.70+1.96*4.04

表3 100名18岁男大学生身高的实际分布与理论分布

分布

x+-s

身高范围(cm)

实际分布

人数

实际分布

百分数(%)

理论分布(%)

X+-1s

168.69~176.71

67

67.00

68.27

X +-1.96s

164.84~180.56

95

95.00

95.00

X+-2.58s

162.35~183.05

99

99.00

99.00

例2:

某饮料公司装瓶流程严谨,每罐饮料装填量符合平均600毫升,标准差3毫升的正态分配法则。随机选取一罐,求(1)容量超过605毫升的概率;(2)容量小于590毫升的概率。

容量超过605毫升的概率 = p ( X > 605)= p ( ((X-μ) /σ) > ( (605 – 600) / 3) )= p ( Z > 5/3) = p( Z > 1.67) = 1 - 0.9525 = 0.0475

容量小于590毫升的概率 = p (X < 590) = p ( ((X-μ) /σ) < ( (590 – 600) / 3) )= p ( Z < -10/3) = p( Z < -3.33) = 0.0004

例3:计算学生智商高低的概率

假设某校入学新生的智力测验平均分数与标准差分别为100与12。那么随机抽取50个学生,他们智力测验平均分数大于105的概率?小于90的概率?

本例没有正态分配的假设,还好中心极限定理提供一个可行解,那就是当随机样本长度超过30,样本平均数\bar{x}近似于一个正态变量,

因此标准正态变量{\displaystyle Z={\frac {​{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}}

平均分数大于105的概率  P(Z>{105-100})=P(Z>5/1.7)=P(Z>2.94)=0.0016}{\displaystyle P(Z>{\frac {105-100}{12/{\sqrt {50}}}})=P(Z>5/1.7)=P(Z>2.94)=0.0016}

平均分数小于90的概率 {P(Z< {90-100}})}=P(Z<-5.88)=0.0000}{\displaystyle P(Z<{\frac {90-100}{12/{\sqrt {50}}}})=P(Z<-5.88)=0.0000}

附录一:

 查表定位例如 要查假设X=1.15,

1)左边一列找到1.1的标准正态分布表 

2)上面一行找到0.05

3)1.1和 0.05所对应的值为 0.8749。

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值