《剑指offer》【滑动窗口的最大值】(python版)

题目描述:
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

思路:
本题最简单的做法是定义一个求最大值的max函数,窗口每一次滑动求窗口内最大值,这种做法的时间复杂度为O((nk1)(k1))=O(nk)k是滑动窗口大小。

窗口的滑动过程中数字的进出类似一个队列中元素的出队入队,这里我们采用一个队列queue存储可能成为最大值的元素下标(之所以队列中存元素下标而不是元素值本身,是因为队列并不存储所有元素,而我们需要知道什么时候队首元素已经离开滑动窗口)。当遇到一个新数时,将它与队尾元素比较,如果大于队尾元素,则丢掉队尾元素,继续重复比较,直到新数小于队尾元素,或者队列为空为止,将新数下标放入队列。同时需要根据滑动窗口的移动判断队首元素是否已经离开

下面以{2,3,6,2,1,7,3,1,5,2},大小为4的窗口模拟过程:

插入数字 窗口 队列 最大值
2 2 0(2)
3 2,3 1(3)
6 2,3,6 2(6)
2 2,3,6,2 2(6),3(2) 6
1 3,6,2,1 2(6),3(2),4(1) 6
7 6,2,1,7 5(7) 7
3 2,1,7,3 5(7),6(3) 7
1 1,7,3,1 5(7),6(3),7(1) 7
5 7,3,1,5 5(7),8(5) 7
2 3,1,5,2 8(5),9(2) 5

算法的实现如下,最好的情况是当数组降序排列,此时新数永远比队尾元素大,直接存入队列,时间复杂度为O(n);最坏的情况是当数组是升序排列,此时新数永远比队列中所有元素都大,每次都需要清空队列,时间复杂度为O(nk)。空间复杂度是O(k)

# -*- coding:utf-8 -*-
class Solution:
    def maxInWindows(self, num, size):
        # write code here
        # 存放可能是最大值的下标
        maxqueue = []
        # 存放窗口中最大值
        maxlist = []
        n = len(num)
        # 参数检验
        if n == 0 or size == 0 or size > n:
            return maxlist
        for i in range(n):
            # 判断队首下标对应的元素是否已经滑出窗口
            if len(maxqueue) > 0 and i - size >= maxqueue[0]:
                maxqueue.pop(0)
            while len(maxqueue) > 0 and num[i] > num[maxqueue[-1]]:
                maxqueue.pop()
            maxqueue.append(i)
            if i >= size - 1:
                maxlist.append(num[maxqueue[0]])
        return maxlist
阅读更多
换一批

没有更多推荐了,返回首页