文章目录
- 一、动态环境对激光SLAM有什么影响
- 二、如何解决上述动态环境遇到的问题
- 三、相关论文汇总
-
- 1. The peopleremover – removing dynamic objectsfrom 3D point cloud data by traversing a voxeloccupancy grid(offline)
- 2. Remove, then Revert: Static Point cloud Map Construction using Multiresolution Range Images(offline)
- 3. DynamicFilter: an Online Dynamic Objects Removal Framework for Highly Dynamic Environments(online)
- 4. ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point Cloud Map Building(offline)
- 5.RF-LIO: Removal-First Tightly-coupled Lidar Inertial Odometry in High Dynamic Environments(online)
一、动态环境对激光SLAM有什么影响
我认为一般来说,分为两个方面:
1. 前端配准
无论是哪种点云配准方式,点到点或是帧到帧,都是基于静态地图的假设。如果有动态点的存在,在实际配准的时候就会有点前后不一致,或者是特征消失,这样的动态点占比过高的话,会造成轨迹的偏差精度下降。
2.后端建图
即使大多数环境下,我们认为整个地图中还是静态物体占了绝大部分,动态物体对整个配准的影响有限,不会有太大的影响。但是这些动态物体在最终生成的地图中会留下大量的类似“鬼影”的痕迹,这对于我们后续定位、建立三维地图模型以及基于地图的路径规划产生不利影响。
二、如何解决上述动态环境遇到的问题
1.前端层面
因为在前端层面有影响的时间非常短,所以考虑的一般是快速移动的物体,解决方案大多采用在前端配准之前或者过程中,实时地滤除掉。从而确保最终留下的大多数是静态点云。这里的重难点在于——滤除的过程必须非常快速,最好是毫秒级甚至忽略不计为好。然而传统方法通常基于帧间对比来分离动态点云,因此最终效率和精度都不尽如人意。
2.建图层面(离线)
在SLAM完成后,一般会生成一张完整的配准后的地图,采用后处理的方式滤除。这样的动态点检测可以参照整个SLAM周期的所有地图信息,更加准确地滤除动态物体。但是唯一的问题是无法和SLAM同步运行,在实际工程应用中可能不适用。优点是对于动态物体的滤除比较彻底。
3.建图层面(在线)
这一策略最大的优点是动态物体过滤与SLAM同步进行,不需要先等待再滤除。该方法一般而言是在前面的离线算法的基础上实现的,通常存在滤除动态点的效果没那么好(牺牲了精度换取时间)的缺点。
三、相关论文汇总
1. The peopleremover – removing dynamic objectsfrom 3D point cloud data by traversing a voxeloccupancy grid(offline)
作者:Johannes Schauer
发表于 ICRA-2018
论文下载:The Peopleremover:paper link
源码下载:3DTK-The 3D Toolkit
- 基本思想:改进后的光线投影方法(ray casting-based method),即如果一个栅格先被激光点击中(hit),而后又被其它激光点的光路穿过(miss, or intersect, or see-through),那么这个栅格是动态栅格,其包含的点云将作为动态点云被过滤掉。The peopleremover 的创造之处在于,每个栅格内存储的不是hit/see-through次数或占据概率,而是所有hit到这个栅格的点云帧的
scan id(scan idendifier),这样可以很大程度上避免同一条光路造成的误杀。 - 提出了“安全面”和“最大搜索距离”的概念,很好地解决了“入射角大”导致误杀的问题

本文聚焦动态环境对激光SLAM的影响,包括前端配准轨迹偏差、后端建图出现“鬼影”痕迹。提出前端实时滤除、建图离线后处理滤除和在线同步滤除等解决办法,并汇总了The peopleremover等相关论文及基本思想。
最低0.47元/天 解锁文章
2502

被折叠的 条评论
为什么被折叠?



