动态环境SLAM近期阅读的相关论文综述

本文聚焦动态环境对激光SLAM的影响,包括前端配准轨迹偏差、后端建图出现“鬼影”痕迹。提出前端实时滤除、建图离线后处理滤除和在线同步滤除等解决办法,并汇总了The peopleremover等相关论文及基本思想。

一、动态环境对激光SLAM有什么影响

我认为一般来说,分为两个方面:

1. 前端配准

无论是哪种点云配准方式,点到点或是帧到帧,都是基于静态地图的假设。如果有动态点的存在,在实际配准的时候就会有点前后不一致,或者是特征消失,这样的动态点占比过高的话,会造成轨迹的偏差精度下降。

2.后端建图

即使大多数环境下,我们认为整个地图中还是静态物体占了绝大部分,动态物体对整个配准的影响有限,不会有太大的影响。但是这些动态物体在最终生成的地图中会留下大量的类似“鬼影”的痕迹,这对于我们后续定位、建立三维地图模型以及基于地图的路径规划产生不利影响。

二、如何解决上述动态环境遇到的问题

1.前端层面

因为在前端层面有影响的时间非常短,所以考虑的一般是快速移动的物体,解决方案大多采用在前端配准之前或者过程中,实时地滤除掉。从而确保最终留下的大多数是静态点云。这里的重难点在于——滤除的过程必须非常快速,最好是毫秒级甚至忽略不计为好。然而传统方法通常基于帧间对比来分离动态点云,因此最终效率和精度都不尽如人意。

2.建图层面(离线)

在SLAM完成后,一般会生成一张完整的配准后的地图,采用后处理的方式滤除。这样的动态点检测可以参照整个SLAM周期的所有地图信息,更加准确地滤除动态物体。但是唯一的问题是无法和SLAM同步运行,在实际工程应用中可能不适用。优点是对于动态物体的滤除比较彻底。

3.建图层面(在线)

这一策略最大的优点是动态物体过滤与SLAM同步进行,不需要先等待再滤除。该方法一般而言是在前面的离线算法的基础上实现的,通常存在滤除动态点的效果没那么好(牺牲了精度换取时间)的缺点。

三、相关论文汇总

1. The peopleremover – removing dynamic objectsfrom 3D point cloud data by traversing a voxeloccupancy grid(offline)

作者:Johannes Schauer
发表于 ICRA-2018
论文下载:The Peopleremover:paper link
源码下载:3DTK-The 3D Toolkit

  1. 基本思想:改进后的光线投影方法(ray casting-based method),即如果一个栅格先被激光点击中(hit),而后又被其它激光点的光路穿过(miss, or intersect, or see-through),那么这个栅格是动态栅格,其包含的点云将作为动态点云被过滤掉。The peopleremover 的创造之处在于,每个栅格内存储的不是hit/see-through次数或占据概率,而是所有hit到这个栅格的点云帧的scan id (scan idendifier),这样可以很大程度上避免同一条光路造成的误杀。
  2. 提出了“安全面”和“最大搜索距离”的概念,很好地解决了“入射角大”导致误杀的问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值