Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation


摘要:在未知环境中导航的移动机器人需要不断地了解周围的动态物体,以便进行映射、定位和规划。在对当前观测中运动物体进行推理的同时,更新静态世界的内部模型是保证安全的关键。在本文中,我们解决了在当前3D激光雷达扫描和环境局部地图中联合估计运动物体的问题。我们使用稀疏四维卷积从扫描图和局部图中提取时空特征,并将所有三维点分割为运动点和非运动点。此外,我们建议使用贝叶斯滤波器将这些预测融合到动态环境的概率表示中。这种体积信念模型,环境的哪些部分可以被移动的物体占据。我们的实验表明,我们的方法优于现有的运动目标分割基线,甚至可以推广到不同类型的激光雷达传感器。我们证明了我们的体积信念融合可以提高在线地图场景中运动目标分割的精度和召回率,甚至可以检索以前错过的运动目标。

I. INTRODUCTION

运动和非运动物体的分割是移动机器人在动态环境中工作的关键。对于地图绘制[33]、[38]、定位[14]、[31]、规划[21]或入住率预测[15]等在线应用来说,这是一个重要的步骤。为了完成这样的任务,机器人需要推理出环境的哪些部分正在移动,哪些部分没有以在线方式移动。为了成功的导航和规划,这些知识不应该局限于机器人当前的感知,而是要整合到环境的表现中。
在这里插入图片描述

在本文中,我们研究了在当前和过去的3D激光雷达扫描中分割运动物体的问题。此外,我们维护一个环境的3D模型,代表我们对空间的哪一部分可以包含移动物体的信念,如图1所示。为了提高运动目标分割(MOS)的准确率和召回率,我们以概率的方式融合我们的预测,在线更新信念。此外,对于同步定位和映射(SLAM),估计环境的哪些部分是动态的是中心兴趣。运动物体的知识可以直接作为物体运动估计集成到优化中,如Henein等人[14]所示,在这个例子中是针对刚体运动进行的。Pfreundschuh等人[31]和Chen等人[7]、[9]证明了运动目标分割对数据关联的有效性。定位和长期规划的另一种策略是建立地图,并在后处理步骤中清除动态物体的痕迹,[1],[2],[18],[22]。因此,所解决的估计问题在机器人技术中具有多种相关应用。

如果需要在线构建静态地图,一种方法是将每个传入扫描分割为运动和非运动,然后仅将静态点整合到地图中[7]。在这种设置中,每个分割都独立于先前的预测完成。这种方法的缺点是不能直接恢复添加到地图上的移动对象。最近,4DMOS[25]通过在接收到更多的观测值后重新估计扫描中的运动目标,并将其融合到二值贝叶斯滤波器中,提高了分割的鲁棒性。然而,只要相应的扫描在4DMOS和相关方法用于预测的过去扫描的有限缓冲区内,MOS的鲁棒性就可以得到提高。此外,使用局部缓冲区的想法假定可以从连续测量中识别物体的运动。这通常适用于大多数旋转LiDAR扫描仪,它们以高频的规则扫描模式扫描周围环境,但不适用于具有有限视场或不规则采样模式的扫描仪[23]。

本文的主要贡献有两个方面。首先,我们提出了一种方法,在不限制时间范围的情况下,利用在该区域记录的所有过去激光雷达测量数据构建局部地图,预测移动物体。其次,我们建立并维护一个体积信念图,并将新的预测在一个基于体素的二进制贝叶斯滤波器中融合到之前的在线估计中,这增加了鲁棒性并纠正了之前的错误预测。总而言之,我们提出了四个关键主张:我们的方法能够(i)根据过去观察的局部地图准确地将传入的LiDAR扫描分割为运动和非运动物体,(ii)在实现最先进性能的同时,很好地推广到新的环境和传感器设置,(iii)通过将多个预测融合到体积信念中来提高运动物体分割的精度和召回率,(iv)通过体积信念从错误的在线地图预测中恢复过来。这些说法得到了论文和我们的实验评估的支持。我们的代码、预训练模型和用于评估的标签可在https://github.com/PRBonn/MapMOS上获得。

2. RELATED WORK

Online LiDAR MOS

通常通过将当前扫描与过去扫描进行比较来实现,目标是将相应的点云分割为运动部分和非运动部分[8],[25]。Yoon等[42]基于两次扫描之间的残差、自由空间滤波和区域生长后处理来识别运动目标。这种方法的一个缺点是物体可能被暂时遮挡,这使得仅考虑两次扫描就很难识别运动。

随后的工作扩展了用于预测的过去信息的时间范围。在全分辨率下处理更多的点通常需要计算量。因此,大多数方法将数据投影为低维表示[7],[19],[36]。Chen等[7]使用过去残余图像和语义分割网络将扫描的距离图像表示分割为运动和非运动。Kim等人[19]的工作通过从语义上额外预测可移动和不可移动的物体来扩展这一想法。Sun等人[36]提出了一个点细化模块来减少边界不精确的影响,有时被称为基于距离图像分割的“标签出血”[26]。

在4DMOS[25]中,通过预测体素化4D空间中的运动物体而无需事先投影,也解决了标签出血问题。**它假设一个物体的运动在过去连续扫描的有限时间范围内是可见的,这些扫描被聚合成一个稀疏的4D点云。通过移动这个时间窗口,以前扫描的预测可以通过将它们融合到一个逐点的二值贝叶斯滤波器中来改进。**为了减少标注的工作量,Kreutz等[20]提出了一种基于4D占用时间序列的特征编码和聚类方法。

与4DMOS类似,我们使用4D卷积提取时空特征,而不是投影数据。与上述方法[7],[19],[25],[36]相比,我们提出的方法使用当前扫描和所有过去扫描的体素化局部点云来预测移动物体,而不限制时间范围

Static Map Building

获得环境静态模型的标准方法是仅基于扫描MOS集成静态点[7]。其他研究人员专注于几何方法,以获得环境的静态表示。例如,占用地图将空间划分为已占用、空闲和未被观察的区域[37]。体素的静态信念通过光线跟踪和使用逆传感器模型的递归贝叶斯估计来更新[37]。最终的映射可以用来决定一个新的测量是否属于一个动态对象[40]。Stachniss和Burgard[35]提出了一种在非静态环境中基于二维网格的定位方法,通过对变化环境的可能配置进行聚类来提高定位。为了涵盖环境的全部时间变化,Biber和Duckett[5]基于不同的时间尺度更新了地图。

相比之下,Nuss等人[29]提出使用随机有限集来显式地模拟每个网格单元的动态状态,该方法已被进一步用于占用率预测等任务[15]。为了处理3D LiDAR数据,Wurm等[41]和Hornung等[16]引入了OctoMap,通过使用八叉树数据结构将占用网格映射扩展到3D空间。也研究了体积占用网格上的光线追踪,以从一组LiDAR扫描中去除动态物体[12],[34]。类似地,Pagad等[30]使用八叉树构建占用网格地图,首先检测地面和物体点,然后使用光线追踪更新体素占用。Arora等[1],[2]利用OctoMap进行静态地图清理,并利用地面分割和投票方案处理未知点

基于可见性的方法[18],[22],[32]通过检查查询点相对于预先构建的地图的一致性来减轻光线跟踪的计算成本。例如,Lim等[22]基于查询与地图之间的高度差来识别累积点云图中暂时遮挡的区域。Huang等[17]并没有去除动态点,而是明确地将运动物体的重建作为3D场景分析的目标。为了处理来自运动物体的稀疏测量,作者注册了多个点云,并估计了先前分类的运动点的偏移向量。

在我们的工作中,我们的目标是缩小扫描在线MOS和离线动态环境的体积表示之间的差距。我们提出了一种方法,将当前扫描以及先前接收到的测量数据分割为移动点和非移动点,并将这些预测融合在3D体积表示中。与上述大多数方法相比,我们在线保持这种信念,并使用它来鲁棒当前预测,并检索以前错过的在线映射的运动对象

3. OUR APPROACH

我们建议根据当前LiDAR帧与由该区域先前测量的扫描组成的局部地图之间的差异来分割运动物体。给定时刻t的当前LiDAR帧,我们首先将其注册到当前的本地地图上,如第III-A节所述。接下来,我们共同预测对齐扫描和局部地图中的移动物体,参见第III-B节。之后,我们将这些预测融合到一个概率体积信念中,以保持动态环境的表示,参见第III-C节。我们可以查询III-D节中解释的一组点的体积信念,以获得这些点是否属于运动物体的当前信念。

A. Scan Registration with KISS-ICP

我们的方法不需要地面真实姿势,它只依赖于连续的3D激光雷达数据。当有新的测量方法可用时,我们使用KISS-ICP[39]注册扫描,这是一个强大的里程计管道,可以很好地推广到不同的运动轮廓和传感器平台,而无需更改参数。

我们在本文中使用的局部地图是与KISS-ICP相同的稀疏体素网格。我们保持体素中点的原始坐标,以避免离散化误差。与最初的KISS-ICP实现不同,我们为每个点额外存储它所产生的扫描时间戳,以便在本地地图中维护时间信息。我们的方法直接使用这些时间信息来预测注册扫描和局部地图的移动物体。

B. Map-based Moving Object Segmentation

我们首先解释如何在注册新的激光雷达框架后共同预测移动物体。我们利用两种不同的机制来分割运动物体。首先,我们考虑当前扫描和局部地图之间的空间差异。该信息表明,相对于之前在该区域的所有测量值,一个物体是否可能已经移动。其次,我们根据附着在每个点上的特征给出的时间戳的演变来识别物体的运动。这允许我们将当前扫描和局部地图分割为运动和非运动部分

与之前的研究[7]、[19]、[25]、[36]不同,我们的方法并不局限于一组固定的过去扫描。由于遮挡、视野有限或激光雷达的不规则拍摄模式,在短时间内无法完全看到移动物体时,这是有利的。在实践中,这有很大的不同。.

在这里插入图片描述

此外,我们不是预测当前扫描或有限扫描缓冲区中的移动物体,而是分割当前扫描和本地地图。分割局部地图使我们能够识别在以前的扫描预测中未分割的移动物体的痕迹。这种动态对象的回溯使我们能够纠正初始的假阴性预测,如图2所示。

我们的局部地图是KISS-ICP的体素网格结构,但我们为每个点存储其4D坐标(位置加时间)。为了在卷积过程中保持扫描和局部映射的顺序,我们将它们组织在一个4D张量中。我们使用时间戳作为点的特征,并基于最小值和最大值对它们进行规范化,因为我们只对它们的相对差感兴趣。这避免了模型过度拟合序列长度,从而避免了它在训练期间看到的最大时间戳

在时刻t,我们将扫描和局部地图的4D点云Pt体素化,使用MinkowskiEngine[10]将其表示为一个稀疏的4D张量。对于4D张量数据,稀疏张量是一种更有效的内存表示,并且允许直接应用稀疏卷积。利用稀疏四维卷积联合提取时空特征。我们的网络架构是一个参数为1:8 Mio的4D MinkUNet[10]。该网络首先对编码器中的点和特征进行下采样以提取高级信息,然后在解码器中对两者进行上采样以获得原始分辨率。残差块和跳过连接有助于保持关于点及其相应特征的详细信息。最后一层预测当前扫描点和局部地图点移动的logits St。图3描述了我们方法的概述。
在这里插入图片描述

C. Volumetric Belief Update

在本节中,我们提出了将点MOS预测融合到概率体积信念中的方法。随着时间的推移融合多个独立的预测可以过滤掉来自神经网络的预测误差,之前已经在点水平上进行了探索[25]。我们的目标不是融合逐点预测,而是建模,环境的哪些部分更有可能包含动态对象。注意,在本例中,我们不希望仅仅识别当前动态,而是要确定移动对象遍历映射的哪一部分。我们将此属性定义为动态占用

我们假设二进制状态 m i ∈ { 0 , 1 } m_i \in \{0,1\} mi{0,1};体素vi的1g动态占用率不随时间变化。直观地说,这意味着如果一个点落在之前被动态占据的体素中,我们假设这个点也属于一个移动的物体。另一方面,如果一个体素被静态点占据,我们不期望在这个体积中观察到一个移动的物体。注意,这个状态定义不同于占用网格映射,在占用网格映射中,假设世界是静态的,并且估计单元格的占用概率是固定的。

在时刻t,我们预测N个对数 S t = { s t , 1 , s t , 2 , . . . s t , N } S_t = \{ s_{t,1},s_{t,2},...s_{t,N}\} St={st,1,st,2,...st,N} s t , j ∈ R s_{t,j}\in R st,jR的N个点 P t = { p t , 1 , p t , 2 , . . . p t , N } P_t = \{ p_{t,1},p_{t,2},...p_{t,N}\} Pt={pt,1,pt,2,...pt,N};如第III-B节所述 p t , j ∈ R 4 p_{t,j}\in R^4 pt,jR4。可以融合当前扫描的logits,也可以融合本地地图点的logits。我们在第四节提供了一个实验来展示不同融合策略的结果。请注意,我们的体积信念并不局限于我们的逻辑,而是来自不同来源的预测可以集成。我们的目标是估计所有体素 M = { m i } M = \{m_i\} M={mi}reading的体积信念图状态的联合概率分布
在这里插入图片描述其中 P 1 : t P_{1:t} P1:t S 1 : t S_{1:t} S1:t分别为之前测点和预测对数到时间t的集合。

将贝叶斯规则应用到右侧的每体素概率分布后,我们可以根据Thrun等人[37]推导递归二值贝叶斯滤波方程。我们使用对数概率符号 l ( x ) = l o g p ( x ) 1 − p ( x ) l(x)= log \frac{p(x)}{ 1 - p(x)} l(x)=log1p(x)p(x),得到

在这里插入图片描述
用于更新单个体素细胞信念 l ( m i ∣ P 1 : t , S 1 : t ) l(m_i | P_{1:t},S_{1: t}) l(miP1:t,S1:t)。这里, l ( m i ∣ P 1 : t − 1 , S 1 : t − 1 ) l(m_i | P_{1:t-1},S_{1: t-1}) l(miP1:t1,S1:t1)是当前存储在体素中的递归项,它聚集了先前的预测 l ( m i ∣ P t , S t ) l(m_i | P_{t},S_{t}) l(miPt,St)是整合当前时间t的预测的体素的更新项 l ( m i ) l(m_i) l(mi)是先验概率p0的对数赔率。我们不假设对体素vi的动态占用有先验知识,因此将其设置为p0 = 0:5。

剩下的步骤是获得每体素的更新 l ( m i ∣ P t ; S t ) l(m_i | P_t;S_t) l(miPt;St)从点Pt和logs St。单点pt;j在时刻t的预测st;j 2 st,索引为j,表示该点是否属于移动对象。由于具有不同logit的多个点最终可能出现在同一个体素中,我们需要聚合它们的信息,并在一个体素中取logit的算术平均值
在这里插入图片描述
其中 V t , j = { j ∣ p t , j ∈ v i } V_{t,j} = \{j|p_{t,j} \in v_i\} Vt,j={jpt,jvi}是在时间t和 ∣ V t , j ∣ |V_{t,j}| Vt,j时落在体素vi中的点的集合;ij是集合的基数。取每个点的对数概率的算术平均值对应于一个点移动的单个可能性的几何平均值。使用几何平均值的似然聚集先前已用于蒙特卡罗定位传感器模型设计[43]。

我们将体积信念实现为哈希表,与密集的3D数组相比,这是一种更节省内存的表示,[28],[39]。每个3D体素vi存储主信念 l ( m i ∣ P 1 : t , S 1 : t ) l(m_i | P_{1:t},S_{1: t}) l(miP1:t,S1:t)关于其动态占用状态 m i ∈ { 0 , 1 } m_i \in \{0,1\} mi{0,1};整合到时间t的预测后。

D. Volumetric Belief Query

对于给定的点集,我们可以通过索引相应的体素vi并转换对数概率信念 l ( m i ∣ P 1 : t ; S 1 : t ) l(m_i | P_{1:t};S_{1:t}) l(miP1:t;S1:t)到后验概率p使用 p ( x ) = e l ( x ) 1 + e l ( x ) p(x) = \frac{e^{l(x)}}{ 1+ e^{l (x)}} p(x)=1+el(x)el(x)。我们假设一个点在移动如果概率大于0:5。请注意,我们的体积信念的体素大小需要适当,因为潜在的假设是,一个体素内的所有点共享相同的动态占用状态。如果体素大小太大,则违反此假设。

E. Online Mapping

对于在线地图,我们感兴趣的是准确地去除移动点。我们在移动物体的边界处经历了离散化效应,例如,对靠近地面的车辆车轮的假负预测。为了实现识别运动物体的亚体素精度和高召回率,我们将过滤的逐体素体积信念与逐点扫描预测相结合,用于在线映射。我们在第IV-E节的实验中证明了这一点。

F. Implementation Details

在我们的测量系统中,我们将用于对扫描进行下采样的体素大小设置为0.5 m。我们通过使用交叉熵损失100次监督扫描点和局部地图点的预测来训练我们的4D CNN,并保存在验证集上表现最好的模型。由于训练集的一些序列不包含大量的运动对象,如果运动点和静态点之间的比例小于0.1%,我们就跳过一批。接下来,我们裁剪场景的矩形块,并通过旋转、翻转和缩放来增加批处理。最后,我们随机丢弃点,丢弃率从区间[0,0.5]来改变点云的密度。在NVIDIA RTX A5000上,一个epoch需要不到25分钟。

在选择体积信念图的体素大小时,由于离散化,需要在计算效率和精度之间进行权衡。在我们的实验中,我们将固定体素大小设置为0.25 m。此外,我们在150米处截取体积信念图。

4. EXPERIMENTAL EVALUATION

这项工作的主要重点是识别当前激光雷达框架中的移动物体和汇总过去扫描的局部地图,并将这些预测融合到概率体积信念地图中。我们通过实验来证明我们的方法的能力。我们的实验结果也支持我们的主要观点,它们是:我们的方法**(i)基于过去观测的局部地图准确地将入射激光雷达扫描分为运动和非运动物体,(ii)在实现最先进性能的同时,很好地推广到新的环境和传感器设置,(iii)通过将多个预测融合到体积信念中来提高MOS的精度和召回率,(iv)通过体积信念从错误的在线地图预测中恢复**。

A. Datasets, Metrics, and Baselines

在接下来的实验中,我们在SemanticKITTI[3]的运动标签上训练所有模型,[4]训练序列00-07和09-10,并使用序列08进行验证。我们没有使用KITTI位姿信息,因为我们的方法使用KISS-ICP[39]注册扫描,如第III-A节所述。

除了基于SemanticKITTI标签的常用SemanticKITTI MOS基准[7]外,我们还对来自KITTI Tracking[13]数据集的标记序列进行了评估和比较,该数据集使用相同的传感器设置记录在具有大量移动行人的街道上。我们还报告了阿波罗哥伦比亚公园MapData[24]子集的结果,标签由Chen等人[8]提供。这些数据是用相同的传感器记录的,但在不同的城市环境中。

为了提高MOS方法的泛化能力,我们在nuScenes[6]数据集上测试了在SemanticKITTI上训练的模型,该模型具有64个10 Hz频率的垂直波束,该数据集具有32个20 Hz的垂直波束。我们基于150个验证序列的注释关键帧的移动标签来评估nuScenes的MOS。

我们在第IV-D节中使用众所周知的移动点的相交-过并(IoU)[11]以及额外的精度和召回率来评估性能。

我们将我们的方法与基于投影的基线LMNet[7]、MotionSeg3D[36]和RVMOS[19]进行了比较。对于MotionSeg3D,我们展示了不使用(v1)和使用建议的点细化(v2)的结果。4DMOS[25]应用稀疏的4D卷积,但在有限的聚合、注册过去扫描的缓冲区上。

B. Moving Object Segmentation Performance

在第一个实验中,我们通过使用过去观察的局部地图来评估我们的方法如何将扫描分割为移动点和非移动点。我们在SemanticKITTI验证集和SemanticKITTI MOS基准上展示了最初报告的基线结果。为了提供公平的比较,我们只考虑在原始SemanticKITTI分裂上训练和验证的方法。这消除了使用额外训练数据的正偏差[8],[36]。

我们评估当前扫描的预测(称为“扫描”)和延迟10次扫描的体积信念(称为“体积信念”)。10次扫描的选择是一个初始估计,它权衡了纠正先前错误估计的能力和所需的等待时间。除了融合所有的扫描预测外,我们决定只整合我们预测的移动的局部地图点。这有两个原因:首先,我们主要对局部地图中我们在之前的扫描预测中错过的移动物体感兴趣。其次,整合所有的局部地图点减少了系统的运行时间。10次扫描的延迟有助于在查询体素的状态之前,通过额外的局部地图预测获得对体素的更多信息。

可以在Tab中看到。我们的体积信念有助于改善验证序列上的结果,而对测试集的影响较小。我们进一步研究了体积信念在第IV-D节中的作用。我们的方法优于4DMOS,表明不限制过去的信息对MOS是有益的。总的来说,我们在隐藏测试集上排名第二,只有RVMOS的表现更好,RVMOS需要额外的语义标签进行训练,而其他所有方法都只使用移动对象标签。我们使用体积信念的方法在验证集中获得了最高的结果,移动点的IoU为86.1%。

我们的MOS模型在使用NVIDIA RTX A5000的SemanticKITTI MOS基准测试中运行在12 Hz。我们在c++中实现了体积信念更新和查询,它在Intel® Xeon® W-1290P CPU @ 3.70 GHz多线程处理器上以44 Hz的频率运行。

C. Generalization Capabilities

在这里插入图片描述

下一个实验分析了我们的方法在新环境和传感器设置中的推广效果。由于MOS通常是一个有监督的任务,并且标记是昂贵的,因此泛化是一个重要的属性。我们在表二中提供了一个实验。II实现了不同层次的域移位,并比较了这些方法的泛化程度。

所有基线都需要外部姿态信息,我们使用KISS-ICP获取这些信息以进行公平比较。请注意,在4DMOS的情况下,我们还报告了对最近一次扫描进行分割的结果,以便在与最初提出的后退地平线策略和二进制贝叶斯滤波器进行精炼之前比较在线性能。不幸的是,RVMOS的代码不是公开的,所以我们不能在这些额外的数据集上运行它。

可以看到,基于投影的方法LMNet和MotionSeg3D在高度拥挤的KITTI跟踪序列19上表现较差。它们的性能在阿波罗数据集上下降得更厉害。我们认为这是因为它们隐式过拟合LiDAR传感器的校准,例如安装位置和强度测量。

相比之下,4DMOS和我们的方法仅使用扫描的时间信息,因此可以很好地推广到新的传感器校准。我们再次使用延迟10次扫描的volumetric belief(称为“volumetric belief”)获得最佳结果,并且优于4DMOS

对于nuScenes数据集,我们无法对基于投影方法的预训练模型进行公平的比较,因为距离图像尺寸会因传感器的垂直分辨率不同而变化。4DMOS和我们的方法仍然能够分割移动对象,但平均移动IoU较低。在这里,4DMOS策略表现出最好的效果。当仅比较当前扫描预测时,我们再次在移动IoU方面取得了更好的结果。

D. Volumetric Belief

接下来,我们进行了实验,展示了我们提出的体积信念如何提高移动IoU,召回率和精度。我们将模型对当前扫描(称为“扫描”)的预测与仅融合扫描预测(称为“体积信念,仅扫描”)后的体积信念进行比较

在这里插入图片描述

你可以从表三上看到。概率融合使用二进制贝叶斯滤波器不断提高我们的扫描预测精度,通过拒绝假阳性在先前预测的区域。同时,由于接地点与运动物体边界之间存在离散误差,召回率下降。接下来,我们额外地融合我们预测移动的局部地图点(称为“体积信念,无延迟”)。结果表明,与仅集成扫描预测的体积信念相比,额外融合局部地图预测可以提高召回率。

我们的最后一个设置(称为“Volumetric Belief”)首先将10个扫描和移动本地地图预测集成到我们的Volumetric Belief中,然后查询它以进行评估,如第IV-B节所述。这种设置在大多数序列的IoU方面再次获得了最佳结果,因为我们现在可以使用局部地图预测来识别移动物体的痕迹并相应地更新体积信念,即使之前基于扫描的预测是静态的。仅在阿波罗的情况下,使用体积信念只融合扫描预测的设置在移动IoU方面稍好一些。由于阿波罗在扫描预测中对移动物体的召回已经非常高,我们认为,在最终的IoU中,额外融合移动的局部地图点所产生的离散化误差的负面影响比纠正假阴性所带来的改善更为重要

E. Online Mapping

在这里插入图片描述
最后,我们分析了如何将我们的方法和相应的体积信念用于在线地图。我们使用VDBFusion[38]库,该库使用VDB数据结构提供基于tsdf的重建管道来构建最终的3D模型[27]。我们在图4中展示了CYT 02序列23和KITTI Tracking序列19(下一行)的结果。CYT 02数据是由Livox MID40扫描仪获得的,与旋转3D激光雷达相比,该扫描仪具有更小的视场和不规则的采样模式。这使得从有限的帧序列中识别移动物体变得更加困难

第一列显示了整合所有扫描后重建的表面,包括移动点。人们可以在地图上看到运动物体的痕迹,这是不希望规划的。

中间列显示了使用后退视界策略整合4DMOS静态预测后的重建。尽管4DMOS去除了大部分动态轨迹,但仍有一些移动物体留在地图中,如图4中的实体标记所示。当与Livox扫描仪一起使用时,由于不规则的采样模式和图4中虚线标记所包围的过去扫描次数有限,4DMOS消除了许多静态点。我们在右栏中显示了最终的地图。

基于第IV-D节获得的高召回率,我们在融合10个扫描和局部地图预测后查询体积信念。为了额外处理第III-E节中解释的接近地面的离散化误差,我们只对地图信念和相应扫描预测都是静态的点进行积分。通过这样做,我们可以实现亚体素精度,甚至可以去除靠近地面的移动点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值