GP-SLAM论文阅读(有关GP地图内容节选) 我们使用空间GP从噪声距离观测中重建局部表面。为了获得更可行的数据关联和地图更新,我们从恢复的表面提取离散样本。这一过程被称为区域化GP地图构建。换句话说,它可以看作是某种。这一过程包括区域化和重建两个部分。
PTV3论文阅读 本文并没有在关注机制内寻求创新的动力。相反,它侧重于克服点云处理背景下精度和效率之间的现有权衡,利用规模的力量。从3D大规模表示学习的最新进展中获得灵感,我们认识到模型性能更受规模而不是复杂设计的影响。因此,我们提出了点转换器V3 (PTv3),它优先考虑简单性和效率,而不是缩放后对整体性能影响较小的某些机制的准确性,例如用具有特定模式组织的点云的高效序列化邻居映射取代KNN的精确邻居搜索。
Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation 我们假设二进制状态。
Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach Exploiting Sequential Data 翻译 在场景中检测和分割移动物体的能力对于构建一致的地图、做出未来状态预测、避免碰撞和规划至关重要。在这封信中,我们解决了3D激光雷达扫描中运动物体分割的问题。我们提出了一种新颖的方法,将当前仅激光雷达移动物体分割的最新技术向前推进,为自主机器人和其他车辆提供相关信息。我们的方法不是从语义上对点云进行分割,即预测车辆、行人、道路等语义类,而是。
动态环境SLAM近期阅读的相关论文综述 对于动态地图中的每个动态点,首先在静态地图中搜索它的最近点。原始地图即已经跑完一遍SLAM的先验地图M,而某一时刻运行的点云则是记作Q,用Q去和M进行对比,Q中没有的,M中有的,点云z向高度差超过一定的阈值的(论文中为0.2),就可以称之为潜在动态区域,用于后续的动态点清除。如果有动态点的存在,在实际配准的时候就会有点前后不一致,或者是特征消失,这样的动态点占比过高的话,会造成轨迹的偏差精度下降。该方法一般而言是在前面的离线算法的基础上实现的,通常存在滤除动态点的效果没那么好(牺牲了精度换取时间)的缺点。
voxblox论文翻译以及部分代码解析 当我们专注于使用更大的体素大小来加速计算的时候,一个重要的需要考虑的就是如何使得新的扫描数据被整合到现有的体素网格中(voxel grid),对于大的体素(大约几十厘米)来自同一次扫描产生的数千个射线也许会映射到同一个voxel,我们利用这一点通过设计一个对每一个end voxel只执行一次光线投射的策略来显著提高速度。【投影映射】:把在可视区域内的体素投影到深度图里面,同时计算它的距离:在深度图中的值与体素中心的距离,这样做非常的快,但是在大的体素上会导致很严重的混叠效应。这儿的"三"和"两"不能搞混。