目录
一、Why & What 正则化
我们总会在各种地方遇到正则化这个看起来很难理解的名词,其实它并没有那么高冷,是很好理解的
首先,从使用正则化解决了一个什么问题的角度来看:正则化是为了防止过拟合, 进而增强泛化能力。用白话文转义,泛化误差(generalization error)= 测试误差(test error),其实就是使用训练数据训练的模型在测试集上的表现(或说性能 performance)好不好

如上图,红色这条“想象力”过于丰富上下横跳的曲线就是过拟合情形。结合上图和正则化的英文 Regularizaiton-Regular-Regularize,直译应该是:规则化(加个“化”字变动词,自豪一下中文还是强)。什么是规则?你妈喊你6点前回家吃饭,这就是规则,
正则化是防止过拟合、增强模型泛化能力的重要手段。它通过添加规则(限制)来约束模型参数,减少模型复杂度。本文详细介绍了正则化的概念、一般正则项和深入理解,探讨了L1和L2正则化的区别,以及它们在不同场景下的适用性。正则化不仅有助于模型简化,还能提高模型的解释性。
订阅专栏 解锁全文
329

被折叠的 条评论
为什么被折叠?



