1 基于输出空间 Y Y Y的划分
{ 分 类 { 二 分 类 多 分 类 回 归 标 注 \begin{cases} 分类 & \begin{cases} 二分类 \\ 多分类 \\ \end{cases} \\ 回归 \\ 标注 \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧分类回归标注{二分类多分类
- 分类问题:输出数据是离散的
二分类:垃圾邮件判别、答案正确性等
多分类:数字识别、图像内容分类等 - 回归问题:输出数据是连续的,在实数空间内的
房价预测、股票收益等 - 标注问题:输出是一个序列
词性标注等

2 基于数据标签 y n y_n yn的划分
{ 监 督 学 习 无 监 督 学 习 半 监 督 学 习 强 化 学 习 \begin{cases} 监督学习 \\ 无监督学习 \\ 半监督学习 \\ 强化学习 \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧监督学习无监督学习半监督学习强化学习
- 监督学习(supervised learning)有输出标签
二分类、多分类、回归等 - 无监督学习(unsupervised learning)没有输出标签
- 聚类(对网络上的新闻进行自动分类)
- 密度估计(对交通路况分析)
- 异常检测(用户网络流量监控)
- 半监督学习(semi-supervised learning)一部分数据有输出标签,另一部分没有
- 增强学习(reinforcement learning)反馈-修正
虽然不能给出真实的标签,但是能给出相应的反馈
如果更接近真实输出,则奖励
如果更偏离真实输出,则惩罚

3 基于protocol f ( x n , y n ) f(x_n,y_n) f(xn,yn)的划分
{ B a t c h l e a r n i n g O n l i n e l e a r n i n g A c t i v e l e a r n i n g \begin{cases} Batch\ \ learning \\ Online\ \ learning \\ Active\ \ learning \end{cases} ⎩⎪⎨⎪⎧Batch learningOnline learningActive learning
- Batch learning:一次性获得一批的训练数据,进行模型的学习
- Online learning:在线学习,数据实时更新,根据逐一获取的数据,同步更新当前算法(动态过程)<感知机、增强学习都可以使用online>
在线邮件过滤系统,根据一封一封的邮件内容,根据当前的算法判断邮件是否为垃圾邮件,并根据用户反馈,及时更新当前算法。 - Active learning:机器主动提问的能力(新)

4 基于输入空间 X X X的划分
{ 具 体 特 征 原 始 特 征 抽 象 特 征 \begin{cases} 具体特征\\ 原始特征\\ 抽象特征 \end{cases} ⎩⎪⎨⎪⎧具体特征原始特征抽象特征
- 具体特征:如硬币分类中硬币的尺寸、重量等
- 原始特征:如手写数字识别中每个数字所在图片的像素值、语音信号的频谱等(需要通过feature transform转换为对应的具体特征)
- 抽象特征:抽象的,没有实际的物理含义的特征(需要进行特征转换和提取)

5 总结



被折叠的 条评论
为什么被折叠?



