Deep Unfolding Network for Image Super-Resolution
代码:https://github.com/cszn/USRNet
摘要:
存在的问题:传统的方法可以通过固定的方法处理不同尺度,模糊核与噪声等问题。而基于学习的方法就不能处理不同退化模型的问题。
得到的效果:可以通过一个模型来处理不同程度的尺度变化,模糊和噪声等问题。
1、Introduction
SR目前面临的主要问题是现有的退化模型与真实的退化方式之间存在较大的差异。
现有的基于CNN的方法无法通过单一的模型应对不同退化方式的图像。
![]()
本文的主要贡献:
(1)第一个试图通过一个模型来处理不同的退化方式(缩放倍数、模糊核、噪声水平)。
(2)USRNet集成了基于模型方法的灵活性和基于学习方法的优势,为基于模型和基于学习方法之间的鸿沟提供了桥梁。(说的很虚呀)
2、Related work
根据实际,应该考虑到三个关键的退化因素:缩放尺寸、模糊核、噪声。
USRnet是一种深度学习方法,旨在通过单一模型处理图像的不同退化,包括尺度变化、模糊和噪声。该网络结合了模型方法的灵活性和学习方法的优势,解决了现有CNN方法对不同退化方式适应性不足的问题。在实验中,USRnet在多种模糊核下表现良好,并且即使在bicubic降质之外的场景下,也能保持较好的图像恢复效果。
订阅专栏 解锁全文
1311

被折叠的 条评论
为什么被折叠?



