luxiaohai学习专栏

止于至善

排序:
默认
按更新时间
按访问量

ReLU、LReLU、PReLU、CReLU、ELU、SELU

ReLU LReLU PReLU CReLU ELU SELUReLU tensorflow中:tf.nn.relu(features, name=None)LReLU(Leaky-ReLU) 其中aia_i是固定的。ii表示不同的通道对应不同的aia_i. tensorflow中:tf...

2018-01-22 22:25:34

阅读数:11086

评论数:1

论文阅读《Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching》

摘要 介绍 相关工作 堆叠残差学习 1 两阶段视差计算 2 多尺度残差学习 3 网络架构 实验 1 实验设置 2 架构对比 3 和其他方法比较 总结 参考文献 摘要 为解决在立体匹配内在的病态区域(目标遮挡、重复模式、无纹理区域等)难产生高质量的视差问题,这篇论文提出一种新...

2018-01-21 20:58:18

阅读数:1233

评论数:4

在docker中使用tensorboard以及docker的可视化

在docker中使用tensorboard docker无法打开两个窗口同时做不同的事,而启用tensorboard时,需要打开一个窗口启动tensorboard,然后打开另外一个窗口启动浏览器。因此一般不能在docker环境下使用tensorboard,因为docker使用tensorboar...

2018-01-19 09:46:30

阅读数:782

评论数:0

论文阅读笔记《PatchMatch Stereo - Stereo Matching with Slanted Support Windows》

摘要 介绍 算法 1 模型 2 通过PatchMatch方法来计算视差 3 后处理 4 为全局方法建立一个数据项 实验结果 摘要 一般的局部立体方法是在一个具有整型数值视差的支持窗口中进行匹配。其中隐含的一个假设:在支持区域中的像素具有恒定的视差,这个假设在倾斜表面是不成立的,...

2018-01-13 15:04:46

阅读数:2224

评论数:3

深度学习中的五大正则化技术

1 数据增强 2 L1 和 L2 正则化 3 Dropout 4 Drop Connect 5 早停法 正则化技术是保证算法泛化能力的有效工具,它可以令参数数量多于输入数据量的网络避免产生过拟合现象。 1.1 数据增强 数据增强是提升算法性能、满足深度学习模型对大量数据的需求的...

2018-01-04 22:12:49

阅读数:518

评论数:0

极大似然估计 极大后验估计 贝叶斯估计 最小二乘法

极大似然估计 极大后验估计 贝叶斯估计 最小二乘法1 极大似然估计极大似然估计(Maximum Likelihood Estimation, MLE)/最大似然估计/最大概似估计 是一种参数估计方法,即已知样本估计出模型的参数。一般说来,事件A发生的概率与某一未知参数θ\theta有关,θ\the...

2018-01-04 11:06:20

阅读数:418

评论数:0

决策树

决策树(decision tree):基本的分类与回归方法。 决策树模型与学习 1 决策树模型 2 决策树学习 特征选择 1 信息增益information gain 2 信息增益比information gain ratio 决策树的生成 1 ID3算法 2 C45的生成算法 ...

2018-01-03 17:05:24

阅读数:322

评论数:0

朴素贝叶斯法

贝叶斯定理 贝叶斯推断 朴素贝叶斯法贝叶斯定理贝叶斯定理(Bayes’ theorem): 实际上就是计算”条件概率”的公式。 所谓”条件概率”(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 最后得到条件概率计算公式为:...

2018-01-02 14:46:31

阅读数:123

评论数:0

深度学习中的卷积与反卷积

卷积 卷积与矩阵乘法的关系 卷积与反卷积的关系普通的神经网络(全连接网络):只能处理向量,因而需要把常见的把图像、音频等高维输入数据展开成向量才能输入给神经网络,这大大破坏了数据在空间上的位置信息。卷积和反卷积:使得神经网络能够处理二维以上的数据,因而能够保持数据在空间上的位置信息。另外,权重共享...

2017-12-29 08:45:12

阅读数:280

评论数:0

论文笔记《Learning Deep Correspondence through Prior and Posterior Feature Constancy》

摘要 介绍 相关工作 本论文方法 1 用于多尺度特征提取的茎块 2 初始视差估计子网络 3 视差精细化子网络 4 迭代精细化 实验 1 脱离实验 2 测试基准结果 总结 参考文献摘要立体匹配算法通常由四步组成:代价计算、代价聚合、视差计算和视差精细化。现有的基于CNN的立体匹配方法仅仅采用CNN...

2017-12-25 21:52:23

阅读数:1017

评论数:5

论文笔记《End-to-End Training of Hybrid CNN-CRF Models for Stereo》用于立体评估的端到端训练的混合CNN-CRF模型

论文作者提供的源码 https://github.com/VLOGroup 摘要: 1. 介绍 2. 相关工作 3. CNN-CRF 模型 3.1 Unary CNN 3.2 Correlation 3.3 CRF 3.4 Pairwise CNN 4. 训练 5. 实验 5.1 单独组...

2017-12-21 11:36:57

阅读数:685

评论数:0

tensorflow版本的一些区别

1.变量初始化函数: if tensorflow.__version__ sess.run(tf.initialize_all_variables()) else: sess.run(tf.global_variables_initializer()) 2. 写日志函数; if tensor...

2017-12-16 10:10:09

阅读数:466

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭