深度学习炼丹-超参数调整和模型训练技巧
于 2022-12-13 21:02:43 首次发布
本文探讨了深度学习中关键的超参数,包括网络层参数、图片尺寸、batch size、学习率和优化器选择。网络层推荐使用3x3卷积和cbr组合,权重初始化方法多样。图片尺寸尽量增大,数据增强能提高模型泛化能力。合适的batch size对于模型收敛至关重要,通常选择2的n次方。学习率是影响模型性能的关键,需要适当地设置和调整。优化器选择应根据项目需求,常见的有SGD、Adam等,适时调整学习率策略有助于模型优化。
订阅专栏 解锁全文
15万+

被折叠的 条评论
为什么被折叠?



