2.24自相关,互相关函数的定义

相关函数的定义:
为了比较某信号与另一延时信号 τ \tau τ信号之间的相似度,需要引入相关函数的概念。相关函数是鉴别信号的有力工具,被广泛应用于雷达回波的识别,通信同步信号的识别等领域。相关函数也被叫做相关积分,它与卷积的运算方法类似。
实函数 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t),如为能量有限信号,它们之间的互相关函数定义为:
R 12 ( τ ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t R_{12}(\tau)=\int_{-\infty}^{\infty}f_1(t)f_2(t-\tau)\rm dt R12(τ)=f1(t)f2(tτ)dt
R 21 ( τ ) = ∫ − ∞ ∞ f 2 ( t ) f 1 ( t − τ ) d t R_{21}(\tau)=\int_{-\infty}^{\infty}f_2(t)f_1(t-\tau)\rm dt R21(τ)=f2(t)f1(tτ)dt

一般情况下 R 12 ( τ ) ! = R 21 ( τ ) R_{12}(\tau)!=R_{21}(\tau) R12(τ)!=R21(τ),一般 R 12 ( τ ) = − R 21 ( τ ) R_{12}(\tau)=-R_{21}(\tau) R12(τ)=R21(τ)

如果 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t)是同一信号,可记为 f ( t ) f(t) f(t),这个时候无需区分 R 12 , R 21 R_{12},R_{21} R12,R21而是使用自相关函数 R ( τ ) R(\tau) R(τ)表示。

R ( τ ) = ∫ − ∞ ∞ f ( t ) f ( t − τ ) d t R(\tau)=\int _{-\infty}^{\infty}f(t)f(t-\tau) \rm dt R(τ)=f(t)f(tτ)dt

可以看出,对自相关函数有:
R ( τ ) = R ( − τ ) R(\tau)=R(-\tau) R(τ)=R(τ)
可见,实函数f(t)的自相关函数是时移 τ \tau τ的偶函数。

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页