
PyTorch
PyTorch学习笔记
Michael阿明
两个孩子的父亲,机械工程师,准备转行人工智能方向,一起加油吧!高举智慧,她就使你高升;怀抱智慧,她就使你尊荣。-- 箴言(4:8)
-
原创 Pytorch 神经网络nn模块
文章目录1. nn模块2. torch.optim 优化器3. 自定义nn模块4. 权重共享 参考 http://pytorch123.com/ 1. nn模块 import torch N, D_in, Hidden_size, D_out = 64, 1000, 100, 10 torch.nn.Sequential 建立模型,跟 keras 很像 x = torch.randn(N, D_in) y = torch.randn(N, D_out) model = torch.nn.Sequen2020-12-28 16:10:59147
1
-
原创 Pytorch 神经网络训练过程
文章目录1. 定义模型1.1 绘制模型1.2 模型参数2. 前向传播3. 反向传播4. 计算损失5. 更新参数6. 完整简洁代码 1. 定义模型 import torch import torch.nn as nn import torch.nn.functional as F class Net_model(nn.Module): def __init__(self): super(Net_model, self).__init__() self.conv1 =2020-12-25 19:03:35103
0
-
原创 Pytorch 自动微分
Tensor.requires_grad = True 记录对Tensor的所有操作,后序.backward() 自动计算所有梯度到 .grad 属性 停止记录调用.detach() import torch x = torch.ones(2,2, requires_grad=True) # 默认是False print(x) tensor([[1., 1.], [1., 1.]], requires_grad=True) .grad_fn 保存了创建张量的 Function 的引.2020-12-24 23:39:34110
3
-
原创 Pytorch 张量tensor
文章目录1. tensor 张量2. 运算3. 切片、形状size()、改变形状view()4. item() 只能读取一个元素 1. tensor 张量 empty 不初始化 import torch x = torch.empty(5,3) # 不初始化 print(x) tensor([[1.0010e-38, 4.2246e-39, 1.0286e-38], [1.0653e-38, 1.0194e-38, 8.4490e-39], [1.0469e-38, 92020-12-24 21:09:33104
2