【Flink】Flink 写入 Clickhouse 大对象直接进入老年代 导致OOM

139 篇文章 643 订阅 ¥19.90 ¥99.00
博主九师兄分析了使用Flink通过HTTP方式写入Clickhouse时遇到的大对象导致的内存溢出(OOM)问题。问题源于大量数据直接进入老年代,且由于网络问题、Kafka缓存和重试机制,加剧了内存压力。解决方案包括调整NettyClient配置、减少并行度、优化重试机制等。
摘要由CSDN通过智能技术生成

本文为博主九师兄(QQ:541711153 欢迎来探讨技术)原创文章,未经允许博主不允许转载。


在这里插入图片描述

1.概述

事情是这样的。使用开源的修改 https://github.com/ivi-ru/flink-clickhouse-sink flink http方式写入Clickhouse.

开始数据量小了没问题,最后数据量大了就会频繁OOM. 然后经过很长时间的排查

开始的现象是:【Flink】kafka Response from server for which there are no in-flight requests NETWORK_EXCEPTION

不是ck写入失败导致的因此和最新的代码没有什么关系

  1. 网络问题 您收到了 NETWORK_EXCEPTION,所以这应该告诉您与您生产的 Kafka Broker 的网络连接有问题。由于某种原因,代理关闭或 TCP 连接关闭。
  2. 出现了奇
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九师兄

你的鼓励是我做大写作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值