leetcode-312:戳气球

该博客详细介绍了LeetCode 312题目的解题方法,包括记忆化搜索(DFS)和动态规划两种策略。作者通过示例解释了题目的要求,并提供了两种方法的代码实现,强调了动态规划中遍历顺序的重要性。

题目

题目连接

有 n 个气球,编号为0 到 n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。

求所能获得硬币的最大数量。

示例 1:

输入:nums = [3,1,5,8]
输出:167

解释:

nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins =  3*1*5    +   3*5*8   +  1*3*8  + 1*8*1 = 167

示例 2:

输入:nums = [1,5]
输出:10

解题

方法一:记忆化+dfs

参考链接

class Solution {
public:
    vector<vector<int>> dp;
    vector<int> nums;
    int dfs(int left,int right){
        if(left>=right-1) return 0;
        if(dp[left][right]!=-1){
            return dp[left][right];
        }
        for(int i=left+1;i<right;i++){
            int sum=nums[left]*nums[i]*nums[right];
            sum+=dfs(left,i)+dfs(i,right);
            dp[left][right]=max(dp[left][right],sum);
        }
        return dp[left][right];
    }
    int maxCoins(vector<int>& nums) {
        int n=nums.size();
        nums.insert(nums.begin(),1);
        nums.push_back(1);
        this->nums=nums;
        dp=vector<vector<int>>(n+2,vector<int>(n+2,-1));
        return dfs(0,n+1);
    }
};

方法二:动态规划

注意遍历顺序

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n=nums.size();
        nums.insert(nums.begin(),1);
        nums.push_back(1);
        vector<vector<int>> dp(n+2,vector<int>(n+2));
        for(int i=n-1;i>=0;i--){
            for(int j=i+2;j<=n+1;j++){
                for(int k=i+1;k<j;k++){
                    int sum=nums[i]*nums[k]*nums[j];
                    sum+=dp[i][k]+dp[k][j];
                    dp[i][j]=max(dp[i][j],sum);
                }
            }
        }
        return dp[0][n+1];
    }
};

或者换种遍历顺序

比如要计算蓝色的这部分dp值,那么首先要计算dp[i][j],i要从j-2开始,向左边遍历。因为计算蓝色部分的dp值会用到这部分
在这里插入图片描述

class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n=nums.size();
        nums.insert(nums.begin(),1);
        nums.push_back(1);
        vector<vector<int>> dp(n+2,vector<int>(n+2));
        for(int j=2;j<=n+1;j++){
            for(int i=j-2;i>=0;i--){
                for(int k=i+1;k<j;k++){
                    int sum=nums[i]*nums[k]*nums[j];
                    sum+=dp[i][k]+dp[k][j];
                    dp[i][j]=max(dp[i][j],sum);
                }
            }
        }
        return dp[0][n+1];
    }
};
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菊头蝙蝠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值