排序:
默认
按更新时间
按访问量

idea中log4j的使用

1 pom文件下添加依赖 <dependency> <groupId>log4j</groupId> <artifactId&a...

2018-11-12 18:10:29

阅读数:3

评论数:0

梯度下降

本文以单变量的线性回归f(x)=wxf(x)=wxf(x)=wx模型来讲解梯度下降。 1.线性回归模型 线性回归模型的表达式为: f(x)=wxf(x)=wxf(x)=wx 线性回归模型的损失函数为: loss=12m∑imf(xi)−yiloss=\frac{1}{2m}\sum_i^m{f...

2018-11-02 11:50:24

阅读数:11

评论数:0

欧几里得空间与希尔伯特空间

https://blog.csdn.net/weixin_36811328/article/details/81207753

2018-11-01 16:36:55

阅读数:25

评论数:0

__len__和__getitem__

示例代码 import collections Card = collections.namedtuple('Card', ['rank', 'suit']) class FrenchDeck: ranks = [str(n) for n in range(2, 11)] + list('JQKA...

2018-10-22 17:25:35

阅读数:16

评论数:0

朴素贝叶斯

朴素贝叶斯法是典型的生成学习方法.生成方法由训练数据学习联合概率分布P(X,Y),然后求得后验概率分布P(Y | X).具体来说, 利用训练数据学习P(X[Y)和P(Y)的估计,得到联合概率分布: 概率估计方法可以是极大似然估计或贝叶斯估计: 朴素贝叶斯法的基本假设是条件独立性, 这...

2018-10-19 13:44:35

阅读数:12

评论数:0

Lp距离, L1范数, 和 L2范数

原文地址:https://blog.csdn.net/hanhuili/article/details/52079590

2018-10-18 17:49:19

阅读数:9

评论数:0

k近邻法与kd树总结

k近邻法是基本且简单的分类与回归方法. k近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的k个最近邻训练实例点,然后利用这k个训练实例点的类的多数来预测输入实例点的类. k近邻模型对应于基于训练数据集对特征空间的一一个划分. k近邻法中,当训练集、距离度量、k值及...

2018-10-18 15:34:47

阅读数:6

评论数:0

感知机学习总结

文章大量摘自《统计学习方法》李航 感知机是根据实例的特征向量xxx对其进行二分类的线性分类模型: f(x)=sign(w⋅x+b)f(x)=sign(w·x+b)f(x)=sign(w⋅x+b) 感知机模型对应输入空间(特征空间)中的分离超平面w⋅x+bw·x+bw⋅x+b。 感知机的...

2018-10-10 11:06:23

阅读数:9

评论数:0

树莓派创建wifi热点并开机自启

1.创建热点 创建WiFi热点使用的GitHub上一个开源项目: https://github.com/oblique/create_ap #将代码copy到本地,安装 sudo git clone https://github.com/oblique/create_ap cd create...

2018-10-05 16:03:05

阅读数:70

评论数:0

设置 jupyter notebook 可远程访问

1. 生成一个 notebook 配置文件 默认情况下,配置文件 ~/.jupyter/jupyter_notebook_config.py 并不存在,需要自行创建。使用下列命令生成配置文件: jupyter notebook --generate-config Writing default ...

2018-10-05 12:11:30

阅读数:49

评论数:0

树莓派3B+ 安装系统

树莓派3B+ 安装系统 对于树莓派3B+ 系统安装方法有很多,我就介绍比较普通的一种。适合小白操作! 安装概要步骤: 官网下载系统-》刷入TF卡-》设置开启显示器和SSH-》通电-》进入系统 1. 进入官方网站下载系统镜像。 ...

2018-10-04 04:21:24

阅读数:59

评论数:0

Matplotlib 入门教程

https://www.jianshu.com/p/aa4150cf6c7f?winzoom=1

2018-09-30 15:37:40

阅读数:18

评论数:0

机器学习三要素

1.三要素组成 机器学习=模型+策略+算法 1.2模型 模型:判别模型,生成模型 具体参考:https://blog.csdn.net/qq_21768483/article/details/79697446 1.3策略

2018-09-30 11:02:22

阅读数:40

评论数:0

基于用户历史位置的用户相似度度量

1.概述 定位获取技术发展(GPS,GSM网络等)使人们可以方便地记录他们用时空数据访问的位置历史。收集大量与个人的轨迹有关地理信息,也给我们从这些轨迹中发现有价值的知识带来了我们机遇和挑战。在本文中,我们目的是基于他们的轨迹挖掘相似性用户之间。这样的用户相似性对于个人,社区和企业通过帮助他们有...

2018-09-11 10:11:05

阅读数:155

评论数:1

MAP(Mean Average Precision)平均精度均值。

  MAP可以由它的三个部分来理解:P,AP,MAP 先说P(Precision)精度,正确率。在信息检索领域用的比较多,和正确率一块出现的是找回率Recall。对于一个查询,返回了一系列的文档,正确率指的是返回的结果中相关的文档占的比例,定义为:precision=返回结果中相关文档的数目/...

2018-09-10 15:46:13

阅读数:40

评论数:0

机器学习降维算法之多维缩放(MDS)

简介    多维缩放(Mutiple Dimensional Scaling)是一种经典的降维方法,可以缓解在高维情形下出现的数据样本稀疏和距离计算困难等问题,即“维数灾难”. 感性认知 只是直观是这样的感觉真实的计算需要查看原理部分 原本样本的维数 样本 特征1 特征2 ...

2018-09-05 15:53:11

阅读数:45

评论数:0

sparrksql 新建表并导入文本数据入库

sparrksql 新建表并导入文本数据入库 #建表的时候指明文件中字段是以 , 分割开的 create table TableName(colunm1 string,colunm2 string,colunm3 string,colunm4 string,colunm5 int row f...

2018-09-03 09:21:30

阅读数:17

评论数:0

pandans入门教程

dataframe数据切片 1.选择行列 dataframe.loc[ row_start:row_stop,[col_name]] 2.筛选满足条件的行 train_data = dataframe[dataframe['DAY'] &am...

2018-08-30 16:39:12

阅读数:208

评论数:3

mysql全库导出与导入

利用mysqldump的—all-databases参数可以一口气把你数据库root用户下的所有数据库一口气导出到一个sql文件里。然后,重装系统后使用source命令可以再一口气倒回来。导出全部数据库mysqldump -h192.168.0.138 -uroot -p --all-databa...

2018-06-11 09:45:00

阅读数:59

评论数:0

spark中TF-IDF的理解及其使用

一. 什么是TF-IDFTF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率).是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随...

2018-06-05 11:49:08

阅读数:332

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭