CMOS图像传感器——了解光圈

本文详细介绍了光圈在摄影中的作用,包括控制曝光和景深,以及对成像质量的影响。光圈大小不仅影响照片的明暗和景深,还涉及衍射、像差、星芒效果和Bokeh质量。了解光圈的F-number,能帮助摄影师更好地掌握画面效果,例如大光圈用于人像摄影,小光圈适合风景拍摄。
摘要由CSDN通过智能技术生成

        在之前有提到传感器英寸,也提到了曝光三要素之一的ISO,这里主要说明另外一个曝光三要素——光圈。在本文中,我们将介绍光圈及其工作原理。

一、什么是光圈

        光圈可以定义为镜头中的开口,光线通过该开口进入相机。类比眼睛是的工作原理,就容易理解了:当人在明亮和黑暗的环境中移动时,眼睛中的虹膜会扩张或收缩,从而控制瞳孔的大小。

        在摄影中,镜头的“瞳孔”被称为光圈。可以通过缩小或放大光圈的大小,以允许更多或更少的光线到达传感器。下图显示了镜头中的光圈:

         光圈可以通过控制景深来调整照片的尺寸。光圈越大,景深越小;光圈越小,景深越大。如光圈极大的情况下,会有一个模糊的背景和一个美丽的浅焦点效果,这是非常流行的肖像摄影;光圈极小的情况下,它会给你从附近前景到远处地平线的清晰照片,风景摄影师经常使用这种效果。

二、光圈对成像的影响

1、曝光(进光量)

        选择

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沧海一升

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值