详细流程:
(1)复制原始yuv数据(2)计算当前CU四个角的坐标
(3)调用xComputeQP计算量化步长
(4)判断这个CU是不是slice第一个CU,是不是slice最后的一个CU
(5)判断这个CU是不是在图像内部(即不在图像的边缘)
(6)看一般的情况(不是slice第一个也不是最后一个CU,CU不在图像的边缘)。
1)从最小的量化步长到最大的量化步长遍历每一个量化步长,对每一个量化步长执行下面的操作(目的是选出最优的量化步长):
Ⅰ)判断是否为无损模式
Ⅱ)初始tempCU的数据——initEstData(这也是个比较重要的函数)
Ⅲ)如果不是I帧(即进行的是帧间预测),执行下面步骤:
a)检测是否使用了EarlySkipDetection,如果使用了,就调用xCheckRDCostInter进行预测变换量化等操作,然后重新设置tempCU的估计数据——initEstData
b)调用xCheckRDCostMerge2Nx2N来检测merge模式下的率失真(其实内部也是经过了一系列的预测变换量化的操作)
c)设置tempCU的估计数据
d)如果没有使用EarlySkipDetection,那么调用xCheckRDCostInter进行帧间预测变换量化等操作,再设置tempCU的估计数据
2)如果没有使用earlyDetectionSkipMode,从最小量化步长到最大量化步长,遍历每一种量化步长:
Ⅰ)判断是否为无损模式
Ⅱ)初始化tempCU的估计数据
Ⅲ)如果不是I帧(即进行的是帧间预测),执行下面步骤(实际是选择一种分割模式):
a)如果CU是8x8或者是2Nx2N,调用xCheckRDCostInter进行帧间预测、变换、量化等操作,再设置tempCU的估计数据
b)如果是2NxN或者Nx2N,那么调用xCheckRDCostInter进行帧间预测、变换、量化等操作,再设置tempCU的估计数据
c)是否使用了准确的AMP方式(注意不是MVP),如果使用了,那么进行下面的操作(实际就是依次测试2NxnU,2NxnD,nLx2N、nRx2N哪种分割模式更好):
①调用deriveTestModeAMP,测试是否需要对垂直和横向使用AMP模式
②如果是水平AMP模式,那么表示分割模式是2NxnU或者2NxnD,仍然是调用xCheckRDCostInter(参数不一样),再设置tempCU的估计数据
③如果是merge的水平AMP模式,同②一样调用,只不过参数不一样
④如果是垂直的AMP模式,那么表示分割模式是nLx2N或者nRx2N,仍然是调用xCheckRDCostInter(参数不一样),再设置tempCU的估计数据
⑤如果是merge的垂直AMP模式,同④一样调用,只不过参数不一样
Ⅳ)如果是I帧,那么进行下面的步骤:
a)调用xCheckRDCostIntra进行帧内预测、变换和量化
b)设置tempCU的估计数据
Ⅴ)如果使用了PCM模式:
a)调用xCheckIntraPCM进行帧内预测、变换量化等
b)设置tempCU的估计数据
3)重置熵编码器的比特数,对split标志进行编码,然后统计比特数,计算总的消耗
4)从最小量化步长到最大的量化步长进行遍历:
Ⅰ)初始化tempCU的估计数据
Ⅱ)如果还没有达到最深的深度,那么需要继续分割成四个子CU:
a)对子最佳CU、子临时CU进行初始化(initSubCU)
b)调用xCompressCU进行递归操作
c)保存最佳的预测数据到tempCU中
Ⅲ)计算代价
Ⅳ)调用xCheckBestMode选择最好的模式
总结,其实compressCU的作用就是从LCU开始深度遍历,计算每一个depth上最优的模式,再综合比较各个depth上最优的模式,选出最优的模式。
// ====================================================================================================================
// Protected member functions
// ====================================================================================================================
/** Compress a CU block recursively with enabling sub-LCU-level delta QP
*\param rpcBestCU
*\param rpcTempCU
*\param uiDepth
*\returns Void
*
*- for loop of QP value to compress the current CU with all possible QP
*/
/*
** 压缩CU的内部函数
*/
#if AMP_ENC_SPEEDUP // 编码加速宏
Void TEncCu::xCompressCU(TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, UInt uiDepth DEBUG_STRING_FN_DECLARE(sDebug_), PartSize eParentPartSize)
#else
Void TEncCu::xCompressCU( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, UInt uiDepth )
#endif
{
/*
由此总结,每个深度的预测用的都是temp,
预测完后跟best比较并交换。best保留作为当前深度的预测数据,
而temp再次初始化。在下一深度的4个子CU预测中用的是subtemp,
每预测完一个子CU,就跟subbest比较交换,再把subbest的数据复制到已经初始化的temp的相应位置。
当temp获取完4个子CU的subbest的数据后,就代表了整个下一深度的数据,这时再与代表当前深度数据的best比较交换
*/
/*
有如下的对应关系
CU partition ---- encodeSplitFlag
PU partition ---- encodePartSize
TU partition ---- encodeTransformSubpFlag
*/
// 获取CU所在的图像
TComPic* pcPic = rpcBestCU->getPic();
DEBUG_STRING_NEW(sDebug)
// get Original YUV data from picture
// 从图像中获取原始YUV数据
// getZorderIdxInCU获取CU在Z形扫描中的顺序
m_ppcOrigYuv[uiDepth]->copyFromPicYuv(pcPic->getPicYuvOrg(), rpcBestCU->getAddr(), rpcBestCU->getZorderIdxInCU());
// variable for Early CU determination
//该CU是否还需要细分的标志
Bool bSubBranch = true;
// variable for Cbf fast mode PU decision
//块状的PU标志
Bool doNotBlockPu = true;
//早检测跳过模式
Bool earlyDetectionSkipMode = false;
//是否为边界
Bool bBoundary = false;
// 获取当前CU的左边像素(X)
// 深度不同,四个位置的像素坐标也会不同
UInt uiLPelX = rpcBestCU->getCUPelX();// 0 (left)
UInt uiRPelX = uiLPelX + rpcBestCU->getWidth(0) - 1;// 63 (right)
UInt uiTPelY = rpcBestCU->getCUPelY(); // 0 (top)
UInt uiBPelY = uiTPelY + rpcBestCU->getHeight(0) - 1;// 63 (buttom)
// 计算量化步长
// 深度不同,量化步长可能也不相同
// 由于HM15.0中的默认配置并没有开启自适应量化步长
// 因此xComputeQP返回的结果总是32
// 可以设置的返回其实可以从0-51
Int iBaseQP = xComputeQP(rpcBestCU, uiDepth);// 基本的量化步长32
// 最小的步长
Int iMinQP;
// 最大的步长
Int iMaxQP;
//是否增加最小的量化步长
Bool isAddLowestQP = false;
const UInt numberValidComponents = rpcBestCU->getPic()->getNumberValidComponents();
//计算最小/最大的量化步长
if ((g_uiMaxCUWidth >> uiDepth) >= rpcTempCU->getSlice()->getPPS()->getMinCuDQPSize())
{
Int idQP = m_pcEncCfg->getMaxDeltaQP();// 配置文件中MaxDeltaQP设置为0
iMinQP = Clip3(-rpcTempCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, iBaseQP - idQP);//32
iMaxQP = Clip3(-rpcTempCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, iBaseQP + idQP);//32
}
else
{
iMinQP = rpcTempCU->getQP(0);
iMaxQP = rpcTempCU->getQP(0);
}
// 使用码率控制
// 注意这里的QP使用了,码率控制对象计算出来的QP
// 通过QP,码率控制对象控制了编码器的比特率
// 没有进去,因为没有使用码率控制
if (m_pcEncCfg->getUseRateCtrl())
{
iMinQP = m_pcRateCtrl->getRCQP();
iMaxQP = m_pcRateCtrl->getRCQP();
}
// transquant-bypass (TQB) processing loop variable initialisation ---
//32
const Int lowestQP = iMinQP; // For TQB, use this QP which is the lowest non TQB QP tested (rather than QP'=0) - that way delta QPs are smaller, and TQB can be tested at all CU levels.
// 是否启用了变换bypass标志
if ((rpcTempCU->getSlice()->getPPS()->getTransquantBypassEnableFlag()))
{
isAddLowestQP = true; // mark that the first iteration is to cost TQB mode.
iMinQP = iMinQP - 1; // increase loop variable range by 1, to allow testing of TQB mode along with other QPs
if (m_pcEncCfg->getCUTransquantBypassFlagForceValue())
{
iMaxQP = iMinQP;
}
}
// If slice start or slice end is within this cu...
//获取CU所属的slice
TComSlice * pcSlice = rpcTempCU->getPic()->getSlice(rpcTempCU->getPic()->getCurrSliceIdx());
//false
//是否为slice开始的CU
Bool bSliceStart = pcSlice->getSliceSegmentCurStartCUAddr() > rpcTempCU->getSCUAddr() && pcSlice->getSliceSegmentCurStartCUAddr()<rpcTempCU->getSCUAddr() + rpcTempCU->getTotalNumPart();
//false
//是否为slice最后的CU
Bool bSliceEnd = (pcSlice->getSliceSegmentCurEndCUAddr()>rpcTempCU->getSCUAddr() && pcSlice->getSliceSegmentCurEndCUAddr() < rpcTempCU->getSCUAddr() + rpcTempCU->getTotalNumPart());
// true
// 是否在图片内部(即不在图像的边缘)
Bool bInsidePicture = (uiRPelX < rpcBestCU->getSlice()->getSPS()->getPicWidthInLumaSamples()) && (uiBPelY < rpcBestCU->getSlice()->getSPS()->getPicHeightInLumaSamples());
// We need to split, so don't try these modes.
/*
** 核心
*/
if (!bSliceEnd && !bSliceStart && bInsidePicture)//不是slice开始的CU也不是slice结束的CU,同时在图像内部
{
// 此循环测试每一种量化步长,计算率失真,选出最优的QP
for (Int iQP = iMinQP; iQP <= iMaxQP; iQP++)//1次循环,iMinQP==iMaxQP
{
// 是否为无损模式
const Bool bIsLosslessMode = isAddLowestQP && (iQP == iMinQP);
if (bIsLosslessMode)
{
iQP = lowestQP;
}
m_ChromaQpAdjIdc = 0;
if (pcSlice->getUseChromaQpAdj())
{
/* Pre-estimation of chroma QP based on input block activity may be performed
* here, using for example m_ppcOrigYuv[uiDepth] */
/* To exercise the current code, the index used for adjustment is based on
* block position
*/
Int lgMinCuSize = pcSlice->getSPS()->getLog2MinCodingBlockSize();
m_ChromaQpAdjIdc = ((uiLPelX >> lgMinCuSize) + (uiTPelY >> lgMinCuSize)) % (pcSlice->getPPS()->getChromaQpAdjTableSize() + 1);
}
// 初始化(很重要)
// 当前CU初始化估计数据 对当前CU以4x4大小进行初始化
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
// do inter modes, SKIP and 2Nx2N
/*
** 在处理所有的其他模式之前,先处理帧间skip和2Nx2N的模式
** 特别是对于2Nx2N的划分,要分两次处理:
** 1、尝试merge模式——xCheckRDCostMerge2Nx2N
** 2、尝试普通的帧间预测(即AMVP)——xCheckRDCostInter
*/
// 如果不是I条带,就进行帧间预测编码
if (rpcBestCU->getSlice()->getSliceType() != I_SLICE)
{
// 2Nx2N
// 如果使用了早期skip检测
if (m_pcEncCfg->getUseEarlySkipDetection())// 这里是一个快速算法的判断语句,默认不执行这里
{
// 预测变换量化等等步骤
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2Nx2N DEBUG_STRING_PASS_INTO(sDebug)); //skip 2NX2N
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
//by Competition for inter_2Nx2N
}
// SKIP
// 检测merge模式下的率失真
xCheckRDCostMerge2Nx2N(rpcBestCU, rpcTempCU DEBUG_STRING_PASS_INTO(sDebug), &earlyDetectionSkipMode);//by Merge for inter_2Nx2N
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
// 没有使用早期skip检测
if (!m_pcEncCfg->getUseEarlySkipDetection())
{
// 2Nx2N, NxN
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2Nx2N DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode())
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
}
if (bIsLosslessMode) // Restore loop variable if lossless mode was searched.
{
iQP = iMinQP;
}
}
// 没有使用早期检测跳过模式,进入这里!!!!
if (!earlyDetectionSkipMode)
{
// 在实际的处理过程当中,对LCU的划分都是以4x4大小的块进行划分的,这是为了处理方便,然后以Z扫描的方式进行扫描,这也是为了方便递归
// 遍历每一种量化步长
for (Int iQP = iMinQP; iQP <= iMaxQP; iQP++)
{
const Bool bIsLosslessMode = isAddLowestQP && (iQP == iMinQP); // If lossless, then iQP is irrelevant for subsequent modules.
if (bIsLosslessMode)
{
iQP = lowestQP;
}
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
// do inter modes, NxN, 2NxN, and Nx2N
/*
** 普通的帧间预测(普通的帧间预测就是AMVP)开始:
** 注意:这里不再处理merge模式和普通帧间的2Nx2N划分模式,
** 这是因为前面已经处理过2Nx2N的划分模式了,merge模式只对于2Nx2N的划分才有效
** 因此下面的处理是没有merge模式和2Nx2N的划分模式的
*/
// 如果不是I条带,那么进行帧间预测编码
if (rpcBestCU->getSlice()->getSliceType() != I_SLICE)
{
// 2Nx2N, NxN
// 一下三个if判断的目的是决定使用哪种类型的分割NxN,2NxN,Nx2N
if (!((rpcBestCU->getWidth(0) == 8) && (rpcBestCU->getHeight(0) == 8)))
{
if (uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth && doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_NxN DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
}
}
// Nx2N模式的处理
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_Nx2N DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_Nx2N)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
// 2NxN的模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2NxN DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_2NxN)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
//! Try AMP (SIZE_2NxnU, SIZE_2NxnD, SIZE_nLx2N, SIZE_nRx2N)
// 接下来是2NxnU、2NxnD、nLx2N、nRx2N的划分模式的处理
/*
** 接下来的处理有点讲究:
** 1、首先测试AMP_ENC_SPEEDUP宏(表示是否加快编码速度)是否开启
** 2、如果AMP_ENC_SPEEDUP宏开启
** (1)默认情况下,如果TestAMP_Hor、TestAMP_Ver为真,那么可以处理2NxnU、2NxnD、nLx2N、nRx2N这四种模式
** (2)如果TestAMP_Hor、TestAMP_Ver为假,但是开启了AMP_MRG宏,而且TestMergeAMP_Hor、TestMergeAMP_Ver为真,那么还是可以处理2NxnU、2NxnD、nLx2N、nRx2N这四种模式
** 否则不再处理2NxnU、2NxnD、nLx2N、nRx2N这四种模式
** (3)由于上面会根据一些条件来判断是否需要处理2NxnU、2NxnD、nLx2N、nRx2N这四种模式,因此某些时候速度会快一点
** 3、如果AMP_ENC_SPEEDUP关闭
** 那么直接处理2NxnU、2NxnD、nLx2N、nRx2N这四种模式,因为没有了条件限制,这四种模式都要测试,因此,速度会慢一点
*/
// 是否需要使用准确的AMP方式
if (pcPic->getSlice(0)->getSPS()->getAMPAcc(uiDepth))
{
#if AMP_ENC_SPEEDUP
Bool bTestAMP_Hor = false, bTestAMP_Ver = false;
#if AMP_MRG
Bool bTestMergeAMP_Hor = false, bTestMergeAMP_Ver = false;
// 测试TestAMP_Hor和TestAMP_Ver是否为真
// 测试,看看是否需要对垂直,横向使用AMP模式
deriveTestModeAMP(rpcBestCU, eParentPartSize, bTestAMP_Hor, bTestAMP_Ver, bTestMergeAMP_Hor, bTestMergeAMP_Ver);
#else
deriveTestModeAMP (rpcBestCU, eParentPartSize, bTestAMP_Hor, bTestAMP_Ver);
#endif
//! Do horizontal AMP
// TestAMP_Hor为真的话,可以使用2NxnU和2NxnD这两种划分模式
//水平AMP
if (bTestAMP_Hor)
{
// 处理2NxnU模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2NxnU DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_2NxnU)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
// 处理2NxnD模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2NxnD DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_2NxnD)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
}
#if AMP_MRG
// TestMergeAMP_Hor为真的话可以使用2NxnU、2NxnD这两种模式
//最优的merge AMP--水平
else if (bTestMergeAMP_Hor)
{
// 处理2NxnU模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2NxnU DEBUG_STRING_PASS_INTO(sDebug), true);
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_2NxnU)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
// 处理2NxnD模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_2NxnD DEBUG_STRING_PASS_INTO(sDebug), true);
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_2NxnD)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
}
#endif
//! Do horizontal AMP
// TestAMP_Ver为真可以处理nLx2N、nRx2N两种模式
if (bTestAMP_Ver)
{
// 处理nLx2N模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_nLx2N DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_nLx2N)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
// 处理nRx2N模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_nRx2N DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
}
}
#if AMP_MRG
// TestMergeAMP_Ver为真可以处理nLx2N、nRx2N模式
else if (bTestMergeAMP_Ver)
{
// 处理nLx2N模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_nLx2N DEBUG_STRING_PASS_INTO(sDebug), true);
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
if (m_pcEncCfg->getUseCbfFastMode() && rpcBestCU->getPartitionSize(0) == SIZE_nLx2N)
{
doNotBlockPu = rpcBestCU->getQtRootCbf(0) != 0;
}
}
// 处理nRx2N模式
if (doNotBlockPu)
{
xCheckRDCostInter(rpcBestCU, rpcTempCU, SIZE_nRx2N DEBUG_STRING_PASS_INTO(sDebug), true);
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
}
}
#endif
#else
xCheckRDCostInter( rpcBestCU, rpcTempCU, SIZE_2NxnU );
rpcTempCU->initEstData( uiDepth, iQP, bIsLosslessMode );
xCheckRDCostInter( rpcBestCU, rpcTempCU, SIZE_2NxnD );
rpcTempCU->initEstData( uiDepth, iQP, bIsLosslessMode );
xCheckRDCostInter( rpcBestCU, rpcTempCU, SIZE_nLx2N );
rpcTempCU->initEstData( uiDepth, iQP, bIsLosslessMode );
xCheckRDCostInter( rpcBestCU, rpcTempCU, SIZE_nRx2N );
rpcTempCU->initEstData( uiDepth, iQP, bIsLosslessMode );
#endif
}// 帧间预测结束!!!!
}
// do normal intra modes
// speedup for inter frames
// 帧内预测开始,帧内预测只有两种划分:2Nx2N、NxN
Double intraCost = 0.0;
if ((rpcBestCU->getSlice()->getSliceType() == I_SLICE) ||
(rpcBestCU->getCbf(0, COMPONENT_Y) != 0) ||
((rpcBestCU->getCbf(0, COMPONENT_Cb) != 0) && (numberValidComponents > COMPONENT_Cb)) ||
((rpcBestCU->getCbf(0, COMPONENT_Cr) != 0) && (numberValidComponents > COMPONENT_Cr))) // avoid very complex intra if it is unlikely
{
// 帧内2Nx2N模式
xCheckRDCostIntra(rpcBestCU, rpcTempCU, intraCost, SIZE_2Nx2N DEBUG_STRING_PASS_INTO(sDebug));
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
// 帧内NxN
if (uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth)
{
if (rpcTempCU->getWidth(0) > (1 << rpcTempCU->getSlice()->getSPS()->getQuadtreeTULog2MinSize()))
{
Double tmpIntraCost;
xCheckRDCostIntra(rpcBestCU, rpcTempCU, tmpIntraCost, SIZE_NxN DEBUG_STRING_PASS_INTO(sDebug));
intraCost = std::min(intraCost, tmpIntraCost);
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
}
}
}// 帧内预测结束!!!
// test PCM
//没有进入,因为没有使用PCM模式
//bool b = pcPic->getSlice(0)->getSPS()->getUsePCM();
// 尝试PCM模式
if (pcPic->getSlice(0)->getSPS()->getUsePCM()
&& rpcTempCU->getWidth(0) <= (1 << pcPic->getSlice(0)->getSPS()->getPCMLog2MaxSize())
&& rpcTempCU->getWidth(0) >= (1 << pcPic->getSlice(0)->getSPS()->getPCMLog2MinSize()))
{
UInt uiRawBits = getTotalBits(rpcBestCU->getWidth(0), rpcBestCU->getHeight(0), rpcBestCU->getPic()->getChromaFormat(), g_bitDepth);
UInt uiBestBits = rpcBestCU->getTotalBits();
if ((uiBestBits > uiRawBits) || (rpcBestCU->getTotalCost() > m_pcRdCost->calcRdCost(uiRawBits, 0)))
{
xCheckIntraPCM(rpcBestCU, rpcTempCU);
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
}
}
if (bIsLosslessMode) // Restore loop variable if lossless mode was searched.
{
iQP = iMinQP;
}
}
}
// 重置比特数
m_pcEntropyCoder->resetBits();
// 对分割标志进行编码
m_pcEntropyCoder->encodeSplitFlag(rpcBestCU, 0, uiDepth, true);
// 比特数量统计
rpcBestCU->getTotalBits() += m_pcEntropyCoder->getNumberOfWrittenBits(); // split bits
rpcBestCU->getTotalBins() += ((TEncBinCABAC *)((TEncSbac*)m_pcEntropyCoder->m_pcEntropyCoderIf)->getEncBinIf())->getBinsCoded();
// 总的消耗统计
rpcBestCU->getTotalCost() = m_pcRdCost->calcRdCost(rpcBestCU->getTotalBits(), rpcBestCU->getTotalDistortion());
// Early CU determination
// HM15.0的配置中没有使用早期的CU
if (m_pcEncCfg->getUseEarlyCU() && rpcBestCU->isSkipped(0))
{
bSubBranch = false;
}
else
{
bSubBranch = true;
}
}//if(!bSliceEnd && !bSliceStart && bInsidePicture )
else if (!(bSliceEnd && bInsidePicture))
{
bBoundary = true;
}
// copy orginal YUV samples to PCM buffer
// HM15.0的配置中没有使用无损编码,不进入
if (rpcBestCU->isLosslessCoded(0) && (rpcBestCU->getIPCMFlag(0) == false))
{
xFillPCMBuffer(rpcBestCU, m_ppcOrigYuv[uiDepth]);
}
if ((g_uiMaxCUWidth >> uiDepth) == rpcTempCU->getSlice()->getPPS()->getMinCuDQPSize())
{
Int idQP = m_pcEncCfg->getMaxDeltaQP();
iMinQP = Clip3(-rpcTempCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, iBaseQP - idQP);
iMaxQP = Clip3(-rpcTempCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, iBaseQP + idQP);
}
else if ((g_uiMaxCUWidth >> uiDepth) > rpcTempCU->getSlice()->getPPS()->getMinCuDQPSize())
{
iMinQP = iBaseQP;
iMaxQP = iBaseQP;
}
else
{
Int iStartQP;
if (pcPic->getCU(rpcTempCU->getAddr())->getSliceSegmentStartCU(rpcTempCU->getZorderIdxInCU()) == pcSlice->getSliceSegmentCurStartCUAddr())
{
iStartQP = rpcTempCU->getQP(0);
}
else
{
UInt uiCurSliceStartPartIdx = pcSlice->getSliceSegmentCurStartCUAddr() % pcPic->getNumPartInCU() - rpcTempCU->getZorderIdxInCU();
iStartQP = rpcTempCU->getQP(uiCurSliceStartPartIdx);
}
iMinQP = iStartQP;
iMaxQP = iStartQP;
}
if (m_pcEncCfg->getUseRateCtrl())
{
iMinQP = m_pcRateCtrl->getRCQP();
iMaxQP = m_pcRateCtrl->getRCQP();
}
if (m_pcEncCfg->getCUTransquantBypassFlagForceValue())
{
iMaxQP = iMinQP; // If all TUs are forced into using transquant bypass, do not loop here.
}
// 从最小量化步长到最大量化步长,递归处理子CU,然后选取最优的量化步长和最优划分模式
for (Int iQP = iMinQP; iQP <= iMaxQP; iQP++)
{
//这个字段总是false,因为HEVC是有损的压缩
const Bool bIsLosslessMode = false; // False at this level. Next level down may set it to true.
// 以4x4的方式初始临时CU
rpcTempCU->initEstData(uiDepth, iQP, bIsLosslessMode);
// further split
// 进一步的分割
if (bSubBranch && uiDepth < g_uiMaxCUDepth - g_uiAddCUDepth)
{
UChar uhNextDepth = uiDepth + 1;
TComDataCU* pcSubBestPartCU = m_ppcBestCU[uhNextDepth];
TComDataCU* pcSubTempPartCU = m_ppcTempCU[uhNextDepth];
DEBUG_STRING_NEW(sTempDebug)
// 进一步的分割,当前CU又被划分成为4个子CU
for (UInt uiPartUnitIdx = 0; uiPartUnitIdx < 4; uiPartUnitIdx++)
{
// 子CU的最佳CU,初始化,仍然是以4x4的方式初始化CU
pcSubBestPartCU->initSubCU(rpcTempCU, uiPartUnitIdx, uhNextDepth, iQP); // clear sub partition datas or init.
pcSubTempPartCU->initSubCU(rpcTempCU, uiPartUnitIdx, uhNextDepth, iQP); // clear sub partition datas or init.
// 判断该CU是否在slice内
Bool bInSlice = pcSubBestPartCU->getSCUAddr() + pcSubBestPartCU->getTotalNumPart()>pcSlice->getSliceSegmentCurStartCUAddr() && pcSubBestPartCU->getSCUAddr() < pcSlice->getSliceSegmentCurEndCUAddr();
if (bInSlice && (pcSubBestPartCU->getCUPelX() < pcSlice->getSPS()->getPicWidthInLumaSamples()) && (pcSubBestPartCU->getCUPelY() < pcSlice->getSPS()->getPicHeightInLumaSamples()))
{
if (0 == uiPartUnitIdx) //initialize RD with previous depth buffer
{
m_pppcRDSbacCoder[uhNextDepth][CI_CURR_BEST]->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]);
}
else
{
m_pppcRDSbacCoder[uhNextDepth][CI_CURR_BEST]->load(m_pppcRDSbacCoder[uhNextDepth][CI_NEXT_BEST]);
}
#if AMP_ENC_SPEEDUP // 如果启用了编码加速选项
DEBUG_STRING_NEW(sChild)
if (!rpcBestCU->isInter(0))
{
// 对CU进行压缩,这是一个递归调用
xCompressCU(pcSubBestPartCU, pcSubTempPartCU, uhNextDepth DEBUG_STRING_PASS_INTO(sChild), NUMBER_OF_PART_SIZES);
}
else
{
xCompressCU(pcSubBestPartCU, pcSubTempPartCU, uhNextDepth DEBUG_STRING_PASS_INTO(sChild), rpcBestCU->getPartitionSize(0));
}
DEBUG_STRING_APPEND(sTempDebug, sChild)
#else // 没有使用编码加速选项
// 递归处理子CU
xCompressCU( pcSubBestPartCU, pcSubTempPartCU, uhNextDepth );
#endif
rpcTempCU->copyPartFrom(pcSubBestPartCU, uiPartUnitIdx, uhNextDepth); // Keep best part data to current temporary data.
xCopyYuv2Tmp(pcSubBestPartCU->getTotalNumPart()*uiPartUnitIdx, uhNextDepth);
}
else if (bInSlice)
{
pcSubBestPartCU->copyToPic(uhNextDepth);
rpcTempCU->copyPartFrom(pcSubBestPartCU, uiPartUnitIdx, uhNextDepth);
}
}
// 计算并更新最优的代价——begin
if (!bBoundary)
{
m_pcEntropyCoder->resetBits();
m_pcEntropyCoder->encodeSplitFlag(rpcTempCU, 0, uiDepth, true);
rpcTempCU->getTotalBits() += m_pcEntropyCoder->getNumberOfWrittenBits(); // split bits
rpcTempCU->getTotalBins() += ((TEncBinCABAC *)((TEncSbac*)m_pcEntropyCoder->m_pcEntropyCoderIf)->getEncBinIf())->getBinsCoded();
}
// 计算RD代价
rpcTempCU->getTotalCost() = m_pcRdCost->calcRdCost(rpcTempCU->getTotalBits(), rpcTempCU->getTotalDistortion());
if ((g_uiMaxCUWidth >> uiDepth) == rpcTempCU->getSlice()->getPPS()->getMinCuDQPSize() && rpcTempCU->getSlice()->getPPS()->getUseDQP())
{
Bool hasResidual = false;
for (UInt uiBlkIdx = 0; uiBlkIdx < rpcTempCU->getTotalNumPart(); uiBlkIdx++)
{
if ((pcPic->getCU(rpcTempCU->getAddr())->getSliceSegmentStartCU(uiBlkIdx + rpcTempCU->getZorderIdxInCU()) == rpcTempCU->getSlice()->getSliceSegmentCurStartCUAddr()) &&
(rpcTempCU->getCbf(uiBlkIdx, COMPONENT_Y)
|| (rpcTempCU->getCbf(uiBlkIdx, COMPONENT_Cb) && (numberValidComponents > COMPONENT_Cb))
|| (rpcTempCU->getCbf(uiBlkIdx, COMPONENT_Cr) && (numberValidComponents > COMPONENT_Cr))))
{
hasResidual = true;
break;
}
}
UInt uiTargetPartIdx;
if (pcPic->getCU(rpcTempCU->getAddr())->getSliceSegmentStartCU(rpcTempCU->getZorderIdxInCU()) != pcSlice->getSliceSegmentCurStartCUAddr())
{
uiTargetPartIdx = pcSlice->getSliceSegmentCurStartCUAddr() % pcPic->getNumPartInCU() - rpcTempCU->getZorderIdxInCU();
}
else
{
uiTargetPartIdx = 0;
}
if (hasResidual)
{
#if !RDO_WITHOUT_DQP_BITS
m_pcEntropyCoder->resetBits();
m_pcEntropyCoder->encodeQP(rpcTempCU, uiTargetPartIdx, false);
rpcTempCU->getTotalBits() += m_pcEntropyCoder->getNumberOfWrittenBits(); // dQP bits
rpcTempCU->getTotalBins() += ((TEncBinCABAC *)((TEncSbac*)m_pcEntropyCoder->m_pcEntropyCoderIf)->getEncBinIf())->getBinsCoded();
rpcTempCU->getTotalCost() = m_pcRdCost->calcRdCost(rpcTempCU->getTotalBits(), rpcTempCU->getTotalDistortion());
#endif
Bool foundNonZeroCbf = false;
rpcTempCU->setQPSubCUs(rpcTempCU->getRefQP(uiTargetPartIdx), rpcTempCU, 0, uiDepth, foundNonZeroCbf);
assert(foundNonZeroCbf);
}
else
{
rpcTempCU->setQPSubParts(rpcTempCU->getRefQP(uiTargetPartIdx), 0, uiDepth); // set QP to default QP
}
}
m_pppcRDSbacCoder[uhNextDepth][CI_NEXT_BEST]->store(m_pppcRDSbacCoder[uiDepth][CI_TEMP_BEST]);
Bool isEndOfSlice = rpcBestCU->getSlice()->getSliceMode() == FIXED_NUMBER_OF_BYTES
&& (rpcBestCU->getTotalBits() > rpcBestCU->getSlice()->getSliceArgument() << 3);
Bool isEndOfSliceSegment = rpcBestCU->getSlice()->getSliceSegmentMode() == FIXED_NUMBER_OF_BYTES
&& (rpcBestCU->getTotalBits() > rpcBestCU->getSlice()->getSliceSegmentArgument() << 3);
if (isEndOfSlice || isEndOfSliceSegment)
{
if (m_pcEncCfg->getCostMode() == COST_MIXED_LOSSLESS_LOSSY_CODING)
rpcBestCU->getTotalCost() = rpcTempCU->getTotalCost() + (1.0 / m_pcRdCost->getLambda());
else
rpcBestCU->getTotalCost() = rpcTempCU->getTotalCost() + 1;
}
// 选择最优的划分模式
xCheckBestMode(rpcBestCU, rpcTempCU, uiDepth DEBUG_STRING_PASS_INTO(sDebug) DEBUG_STRING_PASS_INTO(sTempDebug) DEBUG_STRING_PASS_INTO(false)); // RD compare current larger prediction
// 计算并更新最优代价——end // with sub partitioned prediction.
}
}
DEBUG_STRING_APPEND(sDebug_, sDebug);
rpcBestCU->copyToPic(uiDepth); // Copy Best data to Picture for next partition prediction.
xCopyYuv2Pic(rpcBestCU->getPic(), rpcBestCU->getAddr(), rpcBestCU->getZorderIdxInCU(), uiDepth, uiDepth, rpcBestCU, uiLPelX, uiTPelY); // Copy Yuv data to picture Yuv
if (bBoundary || (bSliceEnd && bInsidePicture))
{
return;
}
// Assert if Best prediction mode is NONE
// Selected mode's RD-cost must be not MAX_DOUBLE.
assert(rpcBestCU->getPartitionSize(0) != NUMBER_OF_PART_SIZES);
assert(rpcBestCU->getPredictionMode(0) != NUMBER_OF_PREDICTION_MODES);
assert(rpcBestCU->getTotalCost() != MAX_DOUBLE);
}
本文详细介绍了HEVC视频编码标准中CU(编码单元)的压缩流程。从原始YUV数据复制到计算量化步长,再到遍历不同量化值确定最优模式,文章深入探讨了CU压缩的各个环节,并解释了如何通过递归操作实现最佳率失真优化。
1595

被折叠的 条评论
为什么被折叠?



